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We study the qualitative dynamics of two-parameter families of planar maps of the
form

F,a,e(x’ y) = (y) —€x+f/‘(y))’

where f,:R - R is a C3 map with a single critical point and negative Schwarzian
derivative. The prototype of such maps is the family f,(y) = #—y2 or (in different
coordinates) fa(y) = Ay(1—y), in which case F, , is the Hénon map. The maps F, .
have constant Jacobian determinant ¢ and, as € - 0, collapse to the family f,. The
behaviour of such one-dimensional families is quite well understood, and we are able
to use their bifurcation structures and information on their non-wandering sets to
obtain results on both local and global bifurcations of ¥, ., for small e. Moreover,
we are able to extend these results to the area preserving family F, ,, thereby obtaining
(partial) bifurcation sets in the (u, ¢)-plane. Among our conclusions we find that
the bifurcation sequence for periodic orbits, which is restricted by Sarkovskii’s
theorem and the kneading theory for one-dimensional maps, is quite different for
two-dimensional families. In particular, certain periodic orbits that appear at the
end of the one-dimensional sequence appear at the beginning of the area preserving
sequence, and infinitely many families of saddle node and period doubling bifurcation
curves cross each other in the (u, ¢)-parameter plane between ¢ = 0 and ¢ = 1.
We obtain these results from a study of the homoclinic bifurcations {tangencies of
stable and unstable manifolds) of F, . and of the associated sequences of periodic
bifurcations that accumulate on them. We illustrate our results with some numerical
computations for the orientation-preserving Hénon map.
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14 P. HOLMES AND D. WHITLEY

1. INTRODUCTION

In this paper we consider the local and global bifurcations of two-parameter families of diffeo-
morphisms of the plane, F, ., that have constant Jacobian determinant e. As ¢ - 0 the behaviour
of F, . is increasingly well approximated by a one-dimensional map f,. We explore the relation
between the bifurcation sets and invariant sets of such one- and two-dimensional maps. Speci-

fically, we consider the family

F, . (%y) = (y, —ex+f.(y)); e€ [0, 1], (1.1)

where f,:R - R is an even function with a single non-degenerate critical point (a maximum)
atx = 0. Precise definitions are given in §2. We assume that, as g increases, the non-wandering
set £, of f, changes from the empty set to a Cantor set on which f, is conjugate to a one-
sided shift on two symbols. Similarly, we assume that for each fixed € € (0, 1] there are values
—0 < sy(€) < ky(€) < oo such that, for # < s, the non-wandering set 2, . of F, . is empty,
while for # > hy, F, |g, . is conjugate to a two-sided shift on two symbols: a Smale horseshoe
(Smale 1963, 1967). We are thus interested in the bifurcations in which horseshoes are created .

The main motivation for the present study comes from considering Poincaré maps F; ,
corresponding to linearly damped T-periodically forced oscillators of the form

E+0x+g(x) = vp(); p(t) = p(t+T), &7 >0, (1.2)
an example of which is Duffing’s equation
#+ 0% —x+x% = 7y cos wt. (1.3)

Since the flow of (1.2) contracts volumes uniformly in the three-dimensional (x, %, ¢) extended
phase space, F; , has constant Jacobian determinant; in fact we have

¢ = det DF;, = e*T € (0, 1]. (1.4)

In typical cases, as the force level y is increased, F;,, exhibits bifurcations to horseshoes of the
type considered in this paper. For specific details regarding Duffing’s equation, see Holmes &
Whitley (1983 ¢, 4), and the earlier studies of Holmes (1979), Moon & Holmes (1979), Ueda
(1980) and Greenspan & Holmes (1982, 1983).

A number of numerical studies of the bifurcations of one- and two-dimensional maps exist,
see, for example, Gumowski & Mira (1980); El-Hamouly & Mira (1981); Arneodo et al.
(1982); Grebogi ¢t al. (1982). The studies of Hénon’s map (Hénon 1976; Simo 1979) are of
particular relevance to the present paper, since this map can be put into the form (1.1) with

Juy) = p—y% (1.5)
although we note that for the parameter values used by Hénon, the map is orientation reversing.
Throughout this paper, we shall use the orientation preserving Hénon map as our main example.
We also refer the reader to van Strien (1982), Gambaudo & Tresser (1983) and Tresser et al.
(1979) for related work on the creation of horseshoes. Recently Yorke & Alligood (1983) have
proved that period doubling sequences occur in a rather general context during the creation
of horseshoes in R®. Their results nicely complement our discussions in §§4 and 5.

A major question that we do not seriously address here is that of whether maps such as (1.1)
can possess strange attractors for ¢ # 0. The results of Jakobson (1981) (cf. Misiurewicz 19814)
establish that F, , does have strange attractors on a p-set of positive Lebesgue measure, since f,
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BIFURCATIONS OF MAPS 45

does. Also see Collet & Eckmann (19804, 4). We hope to return to this question in subsequent
work. We remark that Newhouse’s results on diffeomorphisms with infinitely many sinks do
not preclude the possibility that F, . has strange attractors for a parameter set of positive
measure (Newhouse 1974, 1979, 1980).

This present paper is organized as follows. In §2 we review results on the bifurcations and
non-wandering sets of one-dimensional maps and sketch the structure of the bifurcation set
for a ‘versal’ family. While this section contains little original work it does collect together the
related results of several authors. In particular, we include an outline of the kneading theory
of Milnor & Thurston (1977), and state a theorem that describes a natural decomposition of
the non-wandering set 2,. The latter is originally due to Jonker & Rand (1981), but within
the class of maps with negative Schwarzian derivative, the subsequent work of Singer (1978),
Misiurewicz (19814), Guckenheimer (1979), and van Strien (1982) allows considerable sim-
plification. Nitecki (1981) provides an extensive review of one dimensional dynamics from a
rather different viewpoint.

In §3 we state and prove theorems extending the bifurcation results to two-dimensional
families of the form (1.1). In doing so we outline a two-dimensional analogue of the famous
period doubling bifurcation sequence studied by Feigenbaum (1978) and construct a C1
planar diffeomorphism having a non-wandering set corresponding to that of the one-dimen-
sional map at the first Feigenbaum accumulation point (Whitley 1983). While the saddle-
node and period doubling sequences carry over to the two-dimensional map fairly directly,
we find great differences in ‘later’ global bifurcations in which homoclinic orbits and cycles
are created in the two-dimensional map. In particular we find open sets of parameter values
for which two or more stable periodic orbits coexist, in marked contrast to the one-dimensional
situation, in which at most one stable periodic orbit exists for each u-value (Singer 1978).
Our results also imply the existence of wild hyperbolic sets (Newhouse 1979, 1980) and thus
that there are parameter values for which countably many stable periodic orbits coexist (cf.
Robinson 1983).

In §4 we discuss the homoclinic bifurcations of F, ; € € (0, 1] in more detail and show that,
to each of certain bifurcation points for f, there corresponds a ‘Cantor fan’ of homoclinic
bifurcation curves for F, .. We use the results of Gavrilov & Silnikov (1972, 1973) to show that
each of these curves is the limit of a sequence of saddle node and period doubling bifurcation
curves for periodic orbits. In §5 we use these results to show that infinitely many families of
bifurcation curves must cross each other in the (g, €)-plane. We conclude that the sequence
of bifurcations to periodic orbits observed as one moves through a family such as F, , for fixed
e can differ dramatically from that of the one-dimensional map, and we are able to trace the
structures of certain such bifurcation sequences. This leads us to question the current vogue for
viewing the physical world as a one-dimensional universal map.

In the final section we summarize our results in a model for the creation of horseshoes. We
illustrate with numerical results for the Hénon map.

The space available here prevents us from giving a full background to the differentiable
dynamical and global analytical methods used in this paper. For general background we rec-
ommend the books by Chillingworth (1976), the notes of Newhouse (1980) and Bowen (1978)
and the recent text by Guckenheimer & Holmes (1983). In particular, some familiarity
with the horseshoe construction due to Smale (1963, 1967) (cf. Moser 1973; Newhouse 1980)
will be assumed in this paper. A nice elementary discussion of the horseshoe can be found in
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46 P. HOLMES AND D. WHITLEY

Chillingworth (1976). We feel that a proper understanding of this example is an essential
prerequisite in attempts to understand chaos and strange attractors in dynamical systems of
dimension greater than one.

2. BIFURCATIONS OF ONE-DIMENSIONAL MAPS

In this section we review some of the results on one-dimensional maps. We work with the
class € of C3 even functions f:I - I whose domains I = [—a,a] < R are closed intervals
containing the origin and which satisfy the following properties:

(1) f(—a) = fa) = —a;
(2) f has a single critical point (a maximum) at x = 0, and f"(0) < 0;
(3) the Schwarzian derivative

(%) = " () /[f (%) =3(f" (%) 1f' (%))
is negative on I\{0}.

Many of the results we describe hold for a wider class of maps with a single extremum. In
particular, f need not be even and one may work with maps which are simply continuous
rather than C3. We include condition (3) since for maps f with negative Schwarzian derivative
a result of Singer (1978) (see also Misiurewicz 19814) implies that if p is a stable periodic
point of £, then there is either a critical point of f or an endpoint of I whose w-limit set is the
orbit of p. Thus we replace (1) by

(1) f(—a) = f(a) = —a is an unstable fixed point, i.e. |f'(—a)| > 1,

so that our maps have at most one stable periodic orbit.

Here our main concern is to outline some of the properties of one-parameter families of
maps in €. We consider families f,:R - R, depending continuously on a real parameter g,
which are full in the sense that there are parameter values s; < 4 so that:

(a) the non-wandering set 2, of f, is empty for p < s;;
(b) fu€ € for pe (sy, bl;
(¢) fu(0) > aifp > hy.

In figure 1 we sketch graphs of f, for various values of #. In general the interval I will vary
with the parameter as in the archetypal example,

x> p—x2

where I = [—}— (G +p)}, 3+ (2 +2)}] varies from [—3, 3] to [—2, 2] as x increases from
s =—3toh =2
2.1. The invariant Cantor set for large p

For o > hy, when f, no longer maps I into itself, almost all points eventually escape from 7,
Q, is a Cantor set and J.12, is conjugate to a full (one-sided) shift on two symbols. To see
this, let I, = [—a, b,] and I, = [b,, a] where b, < b, are the pre-images of a (see figure 1e¢).
Denote by X+ the set of semi-infinite sequences €. = {€,}7_o of the symbols +1 and —1, and let
o:Z+ > Xt be the shift map:

(0(8)n = €ns1-
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To each point x € 2, we assign a sequence &(x) € 2+ according to the rule:
+1 if f~(x) e L,
w@ =7
-1 if f(x) € L.
The map &:2, > X+ is surjective since f(I;) > L U L for j = 1,2; i.e. we have a ‘full’ tran-

sition matrix

A=) =], 1

B

(b) (c) (d)
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Ficure 1. Five graphs of f,,. (@) gt < s1. (b) p = 53. (¢) p € (51, ). (d) o = Iy (€) po > by

where a;; = 1if f(L;) © I;and a;; = 0 otherwise; ¢ is also injective. This is clear if the gradient
of f,| i U L is uniformly greater than one in magnitude, as is the case for f,(x) = u—x2 when
> }(5+2,/5) ~ 2.368, for example. (The proof for a general map f, € € with g > &, relies
on the assumption of negative Schwarzian derivative; see van Strien 1982.) Since, by definition
(8(x)) g1 = (8(f(x)))s, we have that oe(x) = &(f(x)). Also, if 2+ is given the topology induced
by the metric

d(e, 8) = "éo Ien;nanl, (2.1)

¢ is easily seen to be a homeomorphism, so that f, |2, is topologically conjugate to o | Z*.
The pair {f; n 2,, I, n 2,} forms a Markov partition for 2, (Bowen 1978).

The dynamics of f,|£2, are now easily read from the model provided by the shift. There
are countably many periodic sequences in 2+ (2" for each period z) which correspond to
periodic points of f,, as well as a countably infinite number of eventually periodic sequences,
representing non-wandering points in / that are pre-images of periodic points, and an un-
countable number of aperiodic sequences, corresponding to non-periodic non-wandering points
of f,. Since the periodic points of o| Z* (the periodic sequences) are dense in 2+, the periodic
points of f, are dense in £,. One can also show that f,| £, has a dense orbit by considering a
symbol sequence that contains all finite strings of length 1,2,3, ... .

Thus we have a complete description of the dynamics of f, € € for 4 > &, and we see that,
as u varies from s, to #,, infinitely many periodic and non-periodic non-wandering points are
created. The rest of this section is concerned with describing the major features of the bifur-
cation set in which these non-wandering points emerge for a full family f, in the range
s, < p < by

2.2. Local bifurcations of f,

There are two well known local bifurcations of periodic points that serve as building blocks
for the bifurcation set: the fold, saddle-node or tangent bifurcation, and the flip or period-
doubling bifurcation (cf. Guckenheimer 1977). These describe the least degenerate ways in
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48 P. HOLMES AND D. WHITLEY

which the local behaviour of the map changes with the parameter, near a parameter value for
which the map has a non-hyberbolic periodic point, i.e. a periodic point with eigenvalue + 1.
We state the results below for fixed points of the map, periodic points are easily accommodated
by considering the relevant iterate of the map, and we suppose that the map has a non-
hyperbolic fixed point at the origin when # = 0, which can always be arranged by translating
coordinates. We assume that the map is C! with respect to the parameter.

(4)

"
I
|
| AN period 2
|

| T~

~ unstable

Ficure 2. Local bifurcations. (a) Fold. (b) Flip.

ProrositioNn 2.1. (Fold bifurcation). Let f:RxR >R, (x, u) > f,(x) be a one-parameter
Samily of C? maps satisfying :

f(0,0) = 0, (2.2)
[f/x] (0,0) = 1, (2.3)
[/ (0, 0) > 0, (2.4)
[92f/2x2] (0, 0) < O. (2.5)

Then there are intervals (g, 0) and (0, pu,) and € > 0 so that
(i) if p e (y, 0) then f,, has no fixed points in (—e, €);
(ii) if p € (0, py) then f, has two hyperbolic fixed points in (—e€, €). One is stable and the other unstable.

Remark. Reversing one of the inequalities (2.4) or (2.5) reverses the roles of the intervals
(#4, 0) and (0, p,).
Prorosition 2.2 (Flip bifurcation). Let f:R xR —> R be a one-parameter family of C* maps

satisfying :
£(0,0) = o, (2.6)

[of/8x] (0, 0) = —1. (2.7)

Then there is a unique branch of fixed points x(u) for p near 0 with x(0) = 0. If the eigenvalue A(p) =
[0f/0x] (x(n), u) satisfies

and also

and

[dA/dg] (0) < O, (2.8)

[03f2/2x%] (0, 0) < 0, (2.9)

then there are intervals (p,, 0) and (0, py) and € > 0 so that
(1) if p € (py, 0) then [}, has a single fixed point in (—e, €) which is a stable fixed point of f,;
(ii) if p € (0, py) then f,, has one unstable fixed point and one stable orbit of period two in (—¢, €).

Remark. Changing either of the inequalities (2.8) or (2.9) reverses the interval in which the
period two points exist. Changing (2.8) reverses the stability of the fixed point, while changing
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BIFURCATIONS OF MAPS 49

(2.9) reverses the stability of the period two points, although for maps with negative Schwarzian
derivative a simple calculation shows that [03/2/0x%] (0, 0) is always negative (cf. Allwright
1978), so that a flip bifurcation for a family of maps in % always involves a stable orbit of period
two.

These two bifurcations are illustrated in figure 2.

The periodic points in the shift 0| 2" which exists for 4 > £, are created by these two
types of bifurcation, a typical sequence of bifurcations being the birth of a pair of orbits of
some ‘basic’ period £ in a fold bifurcation, followed by a sequence of flip bifurcations in which
stable orbits of period 2’k become unstable and give rise to stable orbits of period 2!+1%,
l=0,1,2,.... However, the one-dimensional nature of the map imposes strong restrictions
on the order in which the basic periods may appear as the parameter varies; the presence of
an orbit of a certain period necessarily implies the existence of orbits of various other periods.
More precisely, we have the following results of Sarkovskii (1964) (Stefan 1977 provides an
account of Sarkovskii’s proof in English).

THrEOREM 2.3 (Sarkovskii’s theorem). Order the natural numbers N as follows :

34597<9...92%x83a92%x5<92x79...9283<125<027«...92«...
22922492«

If f: R—>R is a continuous map which has an orbit of period n, then f has an orbit of period m for each
meN withn < m.

Note that this result applies to all continuous maps of R, not just to maps in 4. For functions
with a single extremum, proofs of Sarkovkii’s theorem have subsequently been given by several
authors, including Guckenheimer (1977), Jonker (1979), and Block ¢t al. (1980). Li & Yorke’s
(1975) famous Period three-implies chaos includes the statement that period three starts the list.

2.3. Kneading theory

Sarkovskii’s theorem tells us only the order of ‘first’ appearance of a particular period in a
parameterized family, while for most periods the shift 0| Z+ contains many orbits of that period
(there are, for example, 52377 orbits of period 20!; see table 2 at the end of §2). However,
for families f, € € the kneading theory of Milnor & Thurston (1977), which we now outline,
provides a complete description of the order of appearance of all the non-wandering points,
both periodic and non-periodic, in o | £+. In outlining the relevant parts of the kneading theory
we essentially follow the exposition of Jonker (1979). Guckenheimer (1979, 1980) provides a
different, but for our purposes equivalent, formulation (cf. Guckenheimer & Holmes 1983).

For a map fe% and a point xe we define the itinerary of x to be the semi-infinite sequence
g(x) = {e,(x)}n-0, where

+1Af fr() €[~ a,0),
@) ={ 0 if fx) =0,
-1 if f»(x) € (0, a].

The mapping x> g(x) has the property that &(f(x)) = o(g(x)), but it does not reflect the
ordering of the interval, given the natural lexicographic ordering for the sequences, because f

4 Vol. g11. A
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50 P. HOLMES AND D. WHITLEY

reverses orientation on (0, a]. To take account of this, we define the invariant coordinate of x,
8(x) = {0,(x)}=0, by O,(x) = [T-06;(x), or equivalently,

+1 if jf»+l is orientation preserving near x,
O,(x) = 0 if fm(x) =0 forsomem with 0 <m < n,
—1 if jf»+l is orientation reversing near x.

The basis for the kneading theory is the fact that, if the sequences are ordered lexicographi-
cally, then the mapping x - 0(x) is monotone decreasing (cf. Milnor & Thurston 1977;
Guckenheimer & Holmes 1983).

For fe € we define the kneading invariant of f, v(f), by

v(f) = lim 0(x).
zto

This limit exists (in the topology given by the metric (2.1)), and if we write v(f) = {,}n-0
then, since the set {f~"(0)} is finite for each n, each of the numbers v, is non-zero. Thus
v(f) € 2+, and clearly v, = +1. We note that v(f) = —lim,,0(x) (Jonker 1979).

The monotonicity of the invariant coordinate 8 implies that for each x € I either 0,(x) = 0
for all » > 0, 8(x) > v(f) or 8(x) < —v(f). Similarly, considering f*(x) and using the fact
that o(0(x)) = 6p(x) 0(f(x)), we find that for any n > 0 either 6,(x) = 0 for all £ > n, or
[om(0(x))| = v(f), where |(0,)m-0] = {fo% O,}7—o. We say that a sequence  of the symbols
+1,0 and —1is v(f)-admissible if for all n > 0:

either G(x) = 0 forall £ > n,} (2.10)

or lo™(0)] = v(f).
Then by construction 0(x) is v(f)-admissible for each x € I, and so are 0(x*) = limy,0(y)
and 0(x~) = limy,0(y). Conversely, if 0 is a v(f)-admissible sequence then one can show
(Milnor 1977; cf. Guckenheimer 1979, 1980) that there is a point x € I such that 0 is either
0(x), 0(x*) or 0(x~). In fact, x = inf{y € I|0(y) < 6}, and if [o"(0)| > v(f) for all n, then
0 = 0(x).
Now v = v(f) = 0(0) is also v(f)-admissible, and since v € 2*, we have for all n > 0,

or(v)| = v. (2.11)
Any sequence ve X+ that satisfies (2.11) is called an admissible kneading invariant. If v is an
admissible kneading invariant then there is a map fe€ % for which v = v(f) (Milnor 1977;
cf. Guckenheimer 1979, 1980).

The kneading invariant tells us a great deal about the map and its dynamics. In particular,
the kneading invariant, together with a little information about the stable periodic orbit of f,
should it have one, completely determines the topological equivalence class of f (Guckenheimer
1979). The structure of the non-wandering set 2(f) can also be deduced from v(f) (Jonker &
Rand 1981; see also van Strien 1982). In fact v(f) may be ‘factorized’ in a certain way so
that each factor corresponds to an invariant basic subset of 2(f), leading to a ‘spectral’ de-
composition of 2(f) analogous to that for an Axiom A (see Smale 1967) diffeomorphism.

Before giving a precise description of this decomposition we need several definitions. Let
A < Ibe a closed f-invariant set, i.e. f(A4) = A. We say that A is hyperbolic if there are constants
¢>0and 7 > 1 so that for each x € A either |(f*)" (x)| > ¢7* or |(f*)" ()] < ¢77* for all
k > 1. In the former case we say that A is hyperbolically repelling and in the latter, hyper-
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bolically attracting. The basin of attraction of A is the set B(A) = {x € I|w(x) < A}. Here w(x)
denotes the w-limit set of x:w(x) = Nnzo Unsnf™(x). We say that A is an attracting set if
A S B(A). An attractor of f is an attracting set which contains a dense orbit.

The basic sets £, in the decomposition fall into four types. The simplest possibility is that £;
is a periodic orbit. A second possibility is modelled by a generalization of the shift auto-
morphism o | Z+ defined above. A subset 2f < X+ is said to be of finite type if there is a finite
set of blocks B,, ..., B, of the symbols + 1 so that a sequence a belongs to X} if and only if it
does not contain any of these blocks. If I} is a'ndn-emptysubshift of finite type it is either a
single periodic sequence or is homeomorpﬁic to a Cantor set, and o | 2 is called a subshift of
Jfinite type. As in the case of the full shift, the periodic orbits of a subshift of finite type are dense
in Zf. o| 2 is transitive if there is a sequence ae 2}, whose orbit {o"(a)};_, under the shift is
dense in X}

A further possibility is that £, is contained in a subinterval of I on which some iterate of fis
conjugate to one of the piecewise linear maps

gs(x) = s—1—slx|, se(J2,2]. (2.12)

The non-wandering set of gg|_; ;; can be described exactly (cf. Jonker & Rand 1981). If
m = 2" and /2 < s™ < 2, Q(g,) consists of m disjoint closed intervals J,, ..., J,, together with
a finite number of unstable periodic points. g; maps J; linearly onto J;,, fori = 1,...,m—1,
and maps J,, onto J; with a single fold at the origin.

Finally, in certain cases the decomposition of 2(f) has infinitely many basic sets, and f then
has an attractor on which the dynamics have a symbolic model of the following type. For a
sequence of positive integers k,, n = 1,2, ..., let X, = {0, 1,..., k,} and X = [I%_,X,. The
associated adding machine transformation ¢:X — X is defined by

Glby, kgy ooy iy ) = (0,0,...,0,...)

(Ry+1, Koy vy Xy, .0n) I Xy < Ky,

and

DXy Ky ooy Xy o) =3(0,0, 000y X+ 1, %y, .0n) i 2y =Ky ooy 2y =k,

and x, < k,.

Thus ¢ simply performs addition of 1 with ‘carry-over’, but with a varying number base in
each column (see Brown 1976). The set X is a minimal set for ¢: the ¢-orbit of every point
x € X is dense in X (in the appropriate topology).

Let per (f) denote the set of periodic points of /. We can now state the major result of this
section.

Tueorem 2.4 (Decomposition of Q2(f)). If f€ € there is a decomposition of Q(f) into a finite
or countably infinite number of closed invariant sets 2;, j = 0, 1, ..., including a set 2, if the number
of sets is infinite. The decomposition has the following properties:

(1) 2, = {—a};

(2) if the decomposition is finite, Q(f) = Qo U2, U ... UL, then QN Q2; = @ for0 < i < j < p,
and 2,,_, N 2, contains at most a single periodic orbit;

(3) if the decomposition is infinite, Q(f) = 2y U ... U Lo, then the 2; are disjoint for all j;

(4) if Q(f) =2,V ... UL, peNU {0}, then for 0 <j < p, 2; is hyperbolically repelling, and
either 2 is a periodic orbit, or 2; = per; U C; where per; is a finite subset of per (f), C; is a Cantor
set and f: C; — C; is conjugate to a transitive subshift of finite type;
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(8) f has a unique attractor A < 2,,. The basin of attraction of A, B(A), is open and dense in I if p
is finite and a residual subset of I if p = co; B(A) has full Lebesgue measure in I ;

(6) if p < o0 there are three possibilities for Q,,:

(i) 8, isa periodic orbit{z, f(2), ..., f*1(2)} which is either hyperbolically stable, i.e. |( ™)' (2)] < 1,
or is non-hyperbolic with (f*)' (z) = —1, in which case (f2*)"(z) = 0 and (f2)" (z) < 0 so that Q,
still attracts locally from both sides;

(i) 2, = per, U C, as in (4), except C,, is not hyperbolic. The attractor is a periodic orbit {z, f(z),
ey J7U(2)} contained in C,,; this orbit is not hyperbolic: (f)' (z) = 1, but (f*)" (z) # 0 so that it
still attracts locally from one side;

(iii) 2, = per, U I, where per, is a finite subset of per (f) which is isolated in Q(f), and the
attractor I, is a finite union of intervals. 2, is the disjoint union of N closed sets 2%, j = 1, ..., N, s0
that for j = 1,..., N—1, f| Q7 is a homeomorphism onto Q23+ and f¥| QN :Q8 — QF is conjugate
either to the piecewise linear map (2.12) gi| (—1, 1), for some s € (|/2, 2), restricted to its non-wandering
set, or to g, | [ —1, 1] restricted to its non-wandering set;

(7) if the decomposition has infinitely many sets then the attractor Q. is a Cantor set and f: 2, — Qs
is conjugate to an adding machine transformation. Q. is the closure of the orbit of the critical point of f.

The main parts of this theorem were proved by Jonker & Rand (1981), who worked with
continuous maps with a single extremum. Within the class % the work of Guckenheimer (1979),
Misiurewicz (19814), and van Strien (1982) allows considerable simplification and strengthen-
ing of their results. We shall not describe the proof of the theorem here, but we give various
examples of the decomposition later.

An important property of maps of the interval is that the iterates of nearby points may not
remain close to one another. Guckenheimer (1979) adopts the following definition for this
phenomenon: fe € has sensitive dependence on initial conditions if there is a set X < I of positive
Lebesgue measure and an € > 0 so that for each x € X and any neighbourhood U of x there is
a point y € U and an integer n > 0 with d(f*(x), f*(y)) > e. Guckenheimer shows that fe ¢
has sensitive dependence on initial conditions if and only if an iterate of f on a subinterval of
I is conjugate to a piecewise linear map g, s € (4/2, 2]. These are precisely the maps whose
non-wandering sets have a finite decomposition in which the last set falls into case 6 (iii) of
theorem 2.4. We shall say that such a map has a strange attractor.

A related question is that of the existence of an absolutely continuous, ergodic invariant
measure for £ Misiurewicz (19814) shows that such a measure exists for maps which have no
stable periodic orbits and for which the critical point 0 ¢ {f*(0) |z > 0}. These maps form a
subset of those in case 6 (iii) of the theorem. One might ask whether all maps in case 6 (iii)
have invariant measures; i.e. is sensitive dependence equivalent to the existence of an absolutely
continuous invariant measure? (Cf. Jakobson 1978, 1981.) This is still an open question.

2.4. The bifurcation set

Returning to the question of the bifurcations of a full family in €, let « denote the set of
admissible kneading invariants. We say v is periodic, with period =, if v, ,; = v, for all ¢ > 0,
and antiperiodic, with period n, if v, ; = —v; for all 2 > 0. If v is periodic, the minimal period
of v is the least integer n so that v is periodic or antiperiodic with period n. Let per be the
set of periodic admissible kneading invariants, and /7 be the set of admissible kneading in-
variants which are periodic but not antiperiodic.
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For a full family f, € € let k;:[s;, h,] - x denote the map x - v(f,). The full family f, e ¢
is versal if

(i) ks is monotone decreasing;
(ii) k7(v) is a closed interval if v € IT;

(iii) k7'(v) is an interval of the form (a, 4] if v € per\IT;

(iv) k7'(v) is a singleton if v ¢ per.

Jonker & Rand (1981) show that any family f, can be factored through a versal one; i.e.
there is a versal family g, and a continuous re-parametrization ¢ so that ;o ¢ = k;. Therefore
we shall restrict attention to a versal family f,, for which the problem of describing the bifur-
cation sequence reduces to understanding the order of ¥ and the relation between the kneading
invariant v(f) and the non-wandering set £(f), since »(f) restricts the itineraries which can
occur. The precise way in which this works is perhaps best understood by reference to the
examples given below. Also see Guckenheimer (1979) and Guckenheimer & Holmes (1983).

We shall also assume that the family f, is regular in the sense that the only bifurcations of
periodic points of f, are the fold and flip bifurcations described in propositions 2.1 and 2.2.
As we remarked earlier, condition (2.9) of proposition 2.2 is automatically satisfied for maps
with negative Schwarzian derivative, and it follows from the proof of Singer’s theorem (see
Misiurewicz 19814) that the same is true of condition (2.5) of proposition 2.1. Thus we are
assuming that if p(u) is a periodic point of f, of (minimal) period 7, the following conditions
hold: if

(fi)" (p(pa)) = 1, then ([/0x%]f5()) ([8/0u] /%)) umpra=piuy < 05 (2.13)

(fi)" (p(my)) = —1 then  [3/0u] (f%)" (6(#))|ue < O- (2.14)

Our assumption implies that the number of periodic orbits is a monotone increasing function

and if

of u.

To describe something of the structure of « we shall use the following notation. If £ is a
finite block of + 1 then £’ will denote the sequence obtained by iterating £ indefinitely, and
if B is either a finite or an infinite sequence of + 1 then 2 will denote the sequence obtained by
changing all the signs of §. For a sequence p of + 1 we shall omit the numbers 1 and write g
as a sequence of + or — signs.

The justification of the following description of « may be found in Jonker & Rand (1981),
remembering that their results can be simplified within the class %.

A map fe € has an attracting periodic orbit if and only if v(f) € per. In fact, if v(f) e IT
has period z then f has a periodic orbit O(x) of period z, with 0 < (/)’ (x) < 1, while if
v(f) is anti-periodic, i.e. v(f) € per\/I, then f has a periodic orbit O(x) and either O(x) has
period n and —1 < (f*)’ (x) < 0, or O(x) has period 2z and 0 < (f2*)' (x) < 1. For example,
in the versal family f,, the largest admissible kneading invariantis v(f;) = +++ + ... = (+)".
At p = sy, f, undergoes a fold bifurcation and —a is a fixed point with f;(—a) = 1. The
kneading invariant v(f,) remains constant until the stable fixed point which is created in the
fold bifurcation crosses the critical point x = 0, when v(f,) changes to (+ —)’. As u increases
the fixed point becomes unstable and creates a stable orbit of period two through a flip bifur-
cation, but the kneading invariant remains (+ —)’ until one of the period two points crosses
the critical point, when v(f,) becomes (+ — — +)’.

The first elements of «, in decreasing order, form a sequence (+)’, (+ =), (+ ——+)’,
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(+——+—++-),..., 1e. if (f)’ is a member of this sequence the next smaller element
of x is (BB)’. This sequence in & corresponds to the initial period-doubling sequence for the
family f,. The parameter value at which a stable orbit of period 2!-! has a flip bifurcation and ‘
produces a stable orbit of period 2! will be labelled fy.

For a periodic sequence v = {1,}7_o€k of period m and an admissible « = {o,}2_oex we

define vxa = {r,}5_o by 7, =¥, 0 < i<m. The =factors of v(f) are related to the

decomposition of Q(f) of theorem 2.4. For example, the ‘period doubling’ sequence of
elements of k above may be written

()5 (F) % (=) () % (=) (=) () # (=) (=) % (+ )0

where in the kneading invariant (+)" * (+ —)" * (+ =)' * ... * (+ —)’, with n factors (+ —)’
say, the first factor (4 )’ corresponds to the fixed point in the boundary of I:02y = {—a},
while the jth of the factors (+ —)’ corresponds to an unstable orbit with period 2/-1, except
the last, which corresponds either to a stable orbit of period 2%~ or to an unstable orbit of
period 2¥-1 and a stable orbit of period 2* (case 2.6 (i) of the theorem).

This initial sequence of kneading invariants has a limit which is an aperiodic sequence,
called the Morse sequence, defined iteratively by #;, = + and f,, = 8,8, n > 1, where g, is
the block consisting of the first z terms of the sequence. In the versal family f, the parameter
value for which v(f,) is the Morse sequence will be called F,. The corresponding map lies in
the boundary of the set of maps with zero topological entropy. The maps with this kneading
invariant were studied by Misiurewicz (1981a), who showed that any two such maps are
topologically equivalent. They have non-wandering sets which can be decomposed into an
infinite number of basic sets: the unstable fixed point —a, an unstable periodic orbit of period
2 for each n = 0, 1, 2, ..., and a Cantor set £, on which the map is conjugate to the adding
machine transformation where each base £, = 2 (cf. Collet et al. 1980). This is an example of
cases 3 and 7 of theorem 2.4. The corresponding factorization of the kneading invariant is

v(fp) = (F) = (+ =) % (+=) ... (+-=) *....

Of the maps in € without stable periodic orbits whose non-wandering sets have finite de-
compositions (and hence have strange attractors), perhaps the easiest to understand are those
whose kneading invariants are eventually periodic, i.e. 0™(v) is periodic for some n > 0, but v
is not periodic. For these maps, some iterate of the critical point is an unstable periodic point.
For instance, the smallest element of «, v(f;,) = 4+ (—)’, is not periodic but has eventual period
one, and f} (0) = —a, the fixed point in the boundary of I (see figure 1). In the versal family
J, there is actually a decreasing sequence of parameter values Ay, [ = 0, ., ..., accumulating on
F, from above, for which f2+1(0) lies in the unstable orbit of period 2!-1 created in the initial
period-doubling sequence. The proof of the decomposition theorem shows that f;,; is conjugate
to the piecewise linear map gy(x) = s—1—s|x|, where s = 2v/%. (It has been known for some
time that this is true for the map x - g —x2, when g = A, = 2, where the conjugacy may be
written down explicitly (Ulam & Von Neumann 1947; also see Ruelle 1977).)

Many other examples may be given of kneading invariants which are eventually periodic
but not periodic. For instance, there is a sequence of elements of « of the form

R E

with (n— 1) minuses, the first of which is v(f},), corresponding to the nth iterate of the critical
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point falling on the unstable fixed point in the interior of I. The associated parameter values
accumulate on 4.

Examples of the uncountable number of kneading invariants which are not eventually peri-
odic, but which have finite decompositions and hence correspond to maps with strange attractors,
are also easily constructed. These are associated with parameter values for which the orbit of
the critical point falls on an unstable Cantor set created in earlier bifurcations.

/]

—-a x, x5 J x X a
Ficure 3. A subshift of finite type for £ .

Embedded in the large bifurcation box [sy, h;] (Gumowski & Mira 1980) there are other
boxes in which the behaviour of some iterate of the map on a sub-interval of / mimics that of £,
on I for u €[5y, y]. To illustrate this consider the next simplest ‘basic’ period, period 3: «
contains only one element of period 3, (+ — —)’, and if 53 = inf{u|v(f,) = (+ — =)'} then
Js, has an orbit of period 3, {xy, x,, x5}, with eigenvalue (f3)’ (x;) = 1. Two orbits of period
three are born at s, in a fold bifurcation. (In the family g — g —2, s, = 1.75.) To describe
Q(f,,), let x3 be the unique point x5 5 x, with f(x3) = f(x,), and let I, = [x,, x3], J = (%3, %),
and I, = [x,, x3] (see figure 3). The non-wandering set of f;, consists of the fixed point —a,
and a Cantor set C = (L, U L,)\Un>o/™(J) on which fis conjugate to the subshift of finite
type 2§ where the only excluded block is + +. Alternatively, this subshift may be described
by the transition matrix

L I
0 114 |
4= [1 1] 2 (2.15)

where a;; = 1if f(I;) > I, and a;; = 0 otherwise. (See also Smale & Williams 1976; Gucken-
heimer ef al. 1977.) Note that the non-hyperbolic orbit of period three lies in C, so that C is not
hyperbolic.

Immediately after the fold bifurcation at 4 = s; the map has a (hyperbolic) stable orbit of
period three together with a Cantor set constructed in a similar way, but now containing the
unstable hyperbolic period three orbit created in the fold bifurcation, so that the Cantor set
is now hyperbolic. The kneading invariant remains (+ — —)’ until the central point in the
stable orbit of period three crosses the critical point. The next elements of «, in decreasing order,
are (+———++), (+—-——++—-+++—-), ..., or, in terms of the -factorization,
we have a sequence ’

() % (+==) () *(F==) % (+ =), () % (+—=) = (+ =) *(+-=)5 ...,
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which corresponds to a period-doubling sequence based on the initially stable period three
orbit. This is exactly analogous to the original period-doubling sequence based on the stable
fixed point, and this sequence of kneading invariants has the limit

o —tt—t bt — et t—— = —F ..,
or

(+) s (+==) #(+=) % (+=) *.c.x(+—) *..,
which is constructed in the same manner as the Morse sequence, but is based on the block
+ — —. The map f, with this kneading invariant has a non-wandering set which consists of
the fixed point —a, the subshift X} described above, one unstable orbit of period 2”3 for each
n = 0,1,..., and a Cantor set £, on which f, is conjugate to the adding machine whose first
base £, = 3 and whose other bases £, = 2,7 > 2.

The end of the period three ‘box’ is the parameter value 4 = hy at which an iterate of the
critical point falls on the unstable orbit of period three created in the fold bifurcation at s;.
We have v(f;,) =+ — —(—+ +)". In [s3, #] one can find sequences of parameter values for
which iterates of the critical point fall on unstable periodic orbits born in the period-doubling
sequence following the fold bifurcation at s,, etc.: the behaviour of f? being exactly similar to
that of £, in [sy, ,].

As a final example of the decomposition theorem, note that the admissible kneading in-
variant

(+) *x(+—=) % (+—=) .. (+—=) %...,

lies between (+ — —)’ and + — —(— + +)’, so the associated parameter value Fj lies in
[s3, #3]- The non-wandering set of the map with this kneading invariant has an infinite de-
composition: the fixed point —a, a sequence of Cantor sets 2,, n = 0,1, 2, ..., on (each of)
which f'is conjugate to a subshift of finite type, and a Cantor set £, on which fis conjugate to
the adding machine where each base £, = 3. Each Cantor set £,,, < 0, is contained in 3"2
disjoint sub-intervals, and if the two closest to the critical point are labelled 1, L, then
S| C, n (L U L) is conjugate to the subshift of finite type described by the transition matrix
(2.15).

Similar bifurcation structures occur within each of the countably many bifurcation boxes
[si, #;]. Here our subscript k£ denotes the period of the basic orbits on which the bifurcating
components of 2 are built, as in [sy, #,], [s3, £5], and the superscript j is used to denote the order
of appearance of the period-k boxes with increasing x. We note that, while boxes of period £
contain boxes of all periods mk, m = 3, 4, ..., the boxes are either pairwise disjoint or one is
completely contained within another. In tables 1 and 2 at the end of this section we give some
examples.

In summary, a map whose kneading invariant is periodic has an attracting periodic orbit,
and this orbit attracts a set of points in I which is open and dense, and has full Lebesgue
measure. If the kneading invariant is not periodic but has a finite number of #-factors then
the associated map has a strange attractor which is a union of intervals. If v(f) is aperiodic
but has an infinite decomposition then the attractor is a Cantor set which attracts points in a
residual subset of 7, also of full measure, but these maps do not have sensitive dependence on
initial conditions, and so do not have strange attractors. Some of the admissible kneading
invariants are listed in table 1 and the structure of the bifurcation set of a versal family is
indicated in figure 4.
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The question of the relative size of the set of parameter values for which the map has a
stable periodic orbit and the set of those for which it has a strange attractor remains open.
The results of Douady & Hubbard (1982) on two-to-one analytic maps of the complex plane
show that for the quadratic family x — 4 —x2, the kneading invariant is a monotone function
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Ficure 4. The bifurcation set for a versal family.

of u. To establish the versality of this particular family it remains to show that the set of
parameter values for which the map has a stable periodic orbit is dense in [ —}, 2]. Douady &
Hubbard’s work shows that this problem can be reduced to showing that the Mandelbrot set
M of the family f,(z) = ¢—2%,¢, z€ C,

M = {ce C| fe(0)+ o},

is locally connected (Douady 1982). So far this has not been proved.

In contrast, according to Jakobson (1981), for this family there is a set of parameter values
of positive Lebesgue measure for which the map has an absolutely continuous, ergodic in-
variant measure. These maps have strange attractors.

One further, quite remarkable feature of families of one-dimensional maps that deserves
mention is the universality discovered by Feigenbaum (1978), although we do not use it sub-
sequently in this paper. It has been verified by Lanford (1982) (cf. Collet ¢t al. 1980) that for
a class of maps including the quadratic family x - x4 —x?, the lengths d; = hy—fu converge
to zero, independently of the particular family, at Feigenbaum’s universal rate

lim [d,/d,.,] = 4.669 ....
n—rw

Now the numbers /4y and fy accumulate, from above and below respectively, on the Feigen-
baum point F; where the non-wandering set of the map has a decomposition into an infinite
number of basic sets, and there is similar universal behaviour near any map f, with an infinite
decomposition for Q(f,). For example, consider the map fp with kneading invariant
(+—-=)*(+—=) *(4+——=)" *.... Here, as we saw above, 2(fp,) consists of the fixed
point —a, an infinite sequence of Cantor sets £, on which the map is a subshift of finite type,
and a Cantor set 2, on which the map is the base three adding machine.

To understand the universality at the first Feigenbaum point F,, the map fz, is thought of
as lying in the stable manifold of a fixed point of a ‘doubling’ operator 7, acting on a function
space (see Collet et al. 1980). The fixed point of 7, has a single eigenvalue of modulus greater
than one, and this is the universal constant d, = 4.669 .... A similar argument may be
advanced, at least heuristically, to see that there is universal behaviour associated with other
maps for which £ has an infinite decomposition, such as fp,. For example, we can introduce
a ‘tripling’ operator J;, where, in the notation of figure 3, 7, f is defined to be a suitably
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rescaled version of /3|, »,;. Thus, whereas 7, removes a periodic orbit from the non-wandering
set, 73 removes a Cantor set. We then conjecture that 73 has a unique fixed point (in an
appropriate function space) with a single eigenvalue d3 lying outside the unit circle. The uni-
versal constant &5 then controls the asymptotic rate of various bifurcation sequences which
accumulate on Fj.

For example, in any full family there is a sequence of fold bifurcations of period 32, n > 1,
at parameter values sy, starting with s, where the orbit of period three is born, which accumu-

lates on F, from below, and

lim [(sgn — Sgn+1) /(Sgn+1— Sgn+2)] = &,

n—>0
independently of the family chosen. Derrida et al. (1979) have calculated é5! ~ 0.0181. See
Cvitanovi¢ & Myrheim (1983) for related ideas in a complex context.

In a similar manner we can introduce quadrupling, quintupling, ..., operators 7, 7, ...,
etc., and we can also consider compositions of these operators. The map with kneading in-
variant

() *(+==) s (+—==)x(+—=)x(+——=) =...
for instance, should lie in the stable manifold of a fixed point of 7 0 7.

Obviously a great deal of work must be done to justify rigorously these assertions, which
in any case are somewhat aside from the interests of the present paper.

We conclude this section with two tables that exemplify the theory presented above. In the
first we show some admissible kneading invariants in the period one and period three bifur-
cation boxes [sy, #;] and [s3, A3]. In the second table we show the numbers and genealogies of
all periodic orbits of periods 24 < 24. To compute the figures in this table we select periods
m starting at 1 and use the fact that, for 4 > A;, the map f7' has 2™ fixed points. From 2™ we
subtract n = the sum of all the periodic points whose periods divide m, giving N(m) = (2™ —n) /m
orbits of period m. If m is even, we look back at the number N(im) of periodic orbits of period
im and compute how many of these start their lives as stable orbits. As the theory of this
section shows, of the 28(4m) such orbits created in saddle-nodes S are initially stable, while
(if 4m is even) all of the remaining F(im) = N(}m) —2S(3m) born in flips of }m period orbits
are stable initially. Each of these stable orbits subsequently undergoes a flip bifurcation,
yielding a period m orbit: thus F(m) = N(3m)—2S(3m)+S(3m) = N(3m)—S(3m) of the
period m orbits are born in flips and the remaining ones arise in S(m) — }(N(m) —F(m)) saddle-
nodes which open the bifurcation boxes [}, £,], 1 < j < S(m).

For example, take m = 20. There are 99 orbits of period 10, 6 of period 5, 3 of period 4,
1 of period 2 and the two fixed points. Thus N(m) = (220—(99x10+6x5+3x4+1x2+
2x1))/20 = (1048576 —1036)/20 = 52377. Of the 99 orbits of period im = 10, F(3m) =
F(10) = §(5) = 3 are born in flips of period im = 5 orbits, while 96 arise in §(10) = 48
saddle nodes. Thus F(m) = 99—-48 = 51 and S(m) = (52377—-51)/2 = 26163. We note
that N(m) ~ 2m/m, S(m) ~ 2m1/m and F(m) ~ 2™2/m (m even).

3. CONTINUATION OF BIFURCATIONS TO THE PLANAR CASE

We now turn to the two-parameter family of maps of the plane

F,u,e(x, y) = (y, —€x+f,;¢(y))) (31)
where f, is a family of one-dimensional maps of the type considered in the previous section.
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BIFURCATIONS OF MAPS 59

TABLE 1. SOME ADMISSIBLE KNEADING INVARIANTS AND ITINERARIES OF THE ASSOCIATED
PERIODIC ORBITS, IN THE ORDER OF APPEARANCE WITH INCREASING W

(The itinerary is that of the superstable periodic orbit with the 0 corresponding to the critical point replaced by a
+. The kneading in variant is obtained directly from this itinerary according to the prescription on pages 49-50.)

order
of
appear- bifur-
period, ance, cation
2% J point
1 (1) 8
2x1 (1) f (+=)

itinerary

22x 1 n  fi (F=+-=)
2ox1 (1) F,

6 1 5  (+=+-=-==)
- - by +—+(=)

7 1 s (+=—+——==)
5 1 55 (+—=+-==)

7 2 55 (+—+——+=)
3 (1) s (+—+)

2'x3 (1) Joxa (+—++-+4)
— — s =+ (+—+)
7 3 5 (+=++-+-)
5 2 5 (+=++-)

7 4 s (+—+4+-—=)
— — = =t (=)

6 2 5 (+=++-=)
7 5 g  (+=++-—4)
4 1) s (+—++)

7 6 55 (F—+++—-4)
6 3 s (+—+++-)
— — — =+ ++ (=)
7 7 s (F—=+++-=)
5 3 s (+—+++)

7 8 5 (F—++++-)
— — — =+ +++(=)
6 4 s (+—++++)
7 9 8 (F—+++++)
— — b+ = ()

3 (1 s (+—-4)

2tx3 (1) Joa (+—+)
2x3 (1) fexe (+—+)

+—+(+—+)

(+—++—+——+)

kneading invariant remarks

(+)’ ]
(+-)
(+==4) = (+=)*(+-) |
(+=) *(+=) *...

first period doubling
sequence

Morse sequence:
first Feigenbaum

point
(+=—4—-4+) first period 6
+—=(+=) SH0)=1b
(+=——+—+-=) first period 7
(+——+-) first period 5
(+==+—-—+)
(+--) beginning of 3 box
(+=——=—++) period 3 doubles
== (==+) end of 3 box
(+———++-)
(+=——+)
(+—==+~—+)
b (+-) £ =
(+=——+-)
(+===+-==)
(+=—==) last period 4
(+————++)
(+———=—4+)
Fom——(4-) £ = b
(+———=+-)
(+=———+) last period 5
(+—==——- +)’
PR Y £50) = b
(+——==—— ) last period 6
(+——=——- ) last period 7
+(=) fin de la partie
within the 3 box
(+=-) ;
(+__):* (+_)’, , pggsgl?ng
(+--) *(+")v*(+_) sequence
(+==)*(+ =YV *(+=)%.. Feigenbaum
(Morse 3 sequence) 1 3 point
(+==)*(+—-=) period 3x3 = 9
(+—=)*(+—=—=) *(+—=) *... Dbase3adding
machine
== (=4+) f(0) = point of
period 3

Note that when ¢ = 0, (3.1) is a singular map which collapses the plane into the curve
y = fu(x), on which the dynamics are governed by f,; thus the results of §2 give a complete
description of the bifurcation set of (3.1) whene = 0. We now wish to describe how the bifur-
cation set extends to the (u, €)-plane when ¢ is non-zero. We shall restrict attention to ¢ € (0, 1],
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60 P. HOLMES AND D. WHITLEY

in which case F, . is an orientation-preserving diffeomorphism, although many of our results
are valid for arbitrary e.
We shall assume that f, is a regular, versal family, and for simplicity we suppose that f, is

TABLE 2. SADDLE NODES AND FLIPS FOR ORBITS OF PERIOD 2k > 24

number of orbits, number of saddle-nodes, S(m) number of flips,

period, m N(m) (= number of boxes, 1 < j < S(m)) F(m)
1 2 1 0
2 1 0 1
3 2 1 0
4 3 1 1
5 6 3 0
6 9 4 1
7 18 9 0
8 30 14 2
9 56 28 0

10 99 48 3
11 186 93 0
12 335 165 5
13 630 315 0
14 1161 576 9
15 2182 1091 0
16 4080 2032 16
17 7710 3855 0
18 14560 7266 28
19 27594 13797 0
20 52377 26163 51
21 99858 49929 0
22 190557 95232 93
23 364722 182361 0
24 698870 349350 170
ca. 2™[/m ca. 2™ /m ca. 28™/m, m even

C®. Furthermore, since we are primarily interested in the creation of horseshoes, we hence-
forth assume:
for any € € [0, 1] there are parameter values
-0 < 5(€) < fy(e) < o0,
so that for # < s,(¢) the non-wandering set 2, . of F, . is empty, while for (3.2)

> by(e), F, |2, is conjugate to the full shift on two symbols, (the two-
sided shift if e > 0; the one-sided shift if ¢ = 0).

We remark that (3.2) holds for the Hénon map, where f,(y) = x—y* There we may take
s1(€) = —1(1+¢€)?, where the fixed points of the map are created, and we also have #,(e) <
$(5+24/5) (1+|e|)?, (see Devaney & Nitecki 1979, and §4.3).

We begin by showing that the bifurcation points s§ and f{i, on the u-axis, where J, has fold
and flip bifurcations, extend to bifurcation curves in the (g, ¢)-plane along which the two-
dimensional family (3.1) has bifurcations of the same type. The period-doubling sequences
associated with f, thus carry over to F, .. Unlike f, however, F, . is not restricted to having a
single attractor, and we indicate why it is rather unnatural, and perhaps even impossible, for
a period-doubling sequence in the two-dimensional map to be completed before other bifur-
cations occur and multiple attractors are created.

The bifurcations that intrude into the period-doubling sequences include global, homoclinic
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BIFURCATIONS OF MAPS 61

bifurcations, which are associated with the points in the bifurcation set of f, for which some
iterate of the critical point of f, falls on an unstable periodic orbit. In the second half of this
section we prove that through each point (hd, 0) there passes a curve along which F, ,, ¢ 5 0
has a quadratic homoclinic tangency. Here Ay is the first parameter value in the jth box of
period 2!k for f, for which an iterate of the critical point falls on the unstable orbit of period
2-1f,

For a residual set of families of the form (3.1), all these bifurcation curves extend to the line
e = 1, when the map is area preserving. It is not known if the Hénon map lies in this set.

3.1. Bifurcations of periodic orbits

We first consider the points (s, 0) and (fu, 0) in the bifurcation set of F, 4 and show that
they lie on bifurcation curves of F, . in the (g, ¢)-plane. To begin with, we describe the case
of a fold bifurcation of fixed points; similar arguments apply to flip bifurcations and bifurca-
tions of periodic orbits.

We consider our two-parameter family F, ; as an element of G*(R? x R?), the set of smooth
maps

F:R? x R? - R2x R2,
(s € %, ) > (1, € Fp (%, 9))-

For some fixed large k£ < o, let j%F(u, €, x, y) denote the k-jet of F at (u, €, x, y) and let J*
be the set of all such £-jets. Define X' to be the subset of J* consisting of those k-jets that have a
fixed point, i.e. a point (4, €, x, y) with F, (x,y) = (x, y), such that the Jacobian DF, (x,y)
has an eigenvalue equal to one. Then X' is a closed stratified subset of J* of codimension 3
(Takens 1973). It follows from the jet transversality theorem (Hirsch 1976) that C*(R2 x R?)
contains an open dense subset of maps F for which the £-jet extension

JF:R2x R2 - J*k,
(s € %, y) —>j*F(p, €, x, y)

is transverse to 2. For such an F the image of j*F intersects X in a one-dimensional stratified
set £, and the projection of the pre-image of £ onto the (u, €)-plane is the relevant subset of
the bifurcation set of F, .. The bifurcation set is therefore also a one dimensional stratified set.

Similar arguments apply to the case where the critical eigenvalue is —1, and give a bifur-
cation set for the fixed points of F, . that consists of a one-dimensional stratified subset of the
parameter plane. The one-dimensional strata are curves of fold or flip bifurcations, depending
on whether the critical eigenvalue is +1 or —1. The zero-dimensional strata are either co-
dimension two bifurcation points, or points where the projection of £ is not one-to-one. In
the region 0 < ¢ < 1, the map can have fixed points with at most one eigenvalue of unit
modulus, since we are assuming det (DF, .) = e. Thus, in this region, any co-dimension two
bifurcations occur at parameter values where the map has a fixed point with one critical
eigenvalue at which the map restricted to the one-dimensional centre manifold (Carr 1981;
Guckenheimer & Holmes 1983) has a co-dimension two bifurcation. Now there are only two
co-dimension two bifurcations of one-dimensional maps (see Takens 1973). One is the cusp
bifurcation, with local model » - x + x®+ax +6, familiar from catastrophe theory (Zeeman
1977)- The other, which we shall refer to as a codimension two flip bifurcation, is perhaps less
well known. It has the local model x ——x + 4%+ ax3 + bx, and involves a flip bifurcation along
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the a-axis which changes from a supercritical to a subcritical one at a = 0. (i.e. the sign of
(f?)" in proposition 2.2 changes at ¢ = 0). This happens by means of a fold bifurcation of a
period two orbit occurring along a curve that has a quadratic contact with the a-axis at the
otrigin. The associated bifurcation diagrams and bifurcation sets are shown in figure 5 (in each
case we assume the + sign in the local model; the — sign changes all the stability types).

) stable fixed
(b) point

d stable

period

unstable
period 2

unstable
fixed point

saddle-nodes

/

Ficure 5. Co-dimension two bifurcations. (a) Cusp. () Flip.

At parameter values where the projection of £ is not one-to-one, we have two distinct
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bifurcations occurring simultaneously in different places in the phase space, and there is the
possibility that the bifurcation curves form loops in the parameter plane. It is easy to see that
this cannot happen for a curve of fold bifurcations, but it may occur for curves of flip bifur-
cations (and in fact this does happen in the Hénon map for ¢ < 0: see the numerical studies
of El Hamouly & Mira 1981).

Now, since we have assumed that for u sufficiently small the non-wandering set of F, , is
empty, while for large g it is the full two-shift, all bifurcation curves are trapped in a finite g-
range. Thus for a generic family the bifurcation point (s;, 0), where the fixed points in the one-
dimensional family are born, extends to a bifurcation curve in the (g, €)-plane which cannot
escape to oo in the u-direction. Also, the bifurcation curve cannot stop at any point in the range
0 < e < 1, since the only possible way it could end would be at a codimension two flip bifur-
cation, but the fold bifurcations involved in a codimension two flip are for orbits of period two.

—

< Thus (s4, 0) lies on a bifurcation curve which extends to the line ¢ = 1, possibly passing through
> E cusp points on the way. (In fact for the Hénon family this bifurcation curve is easily found
2 (25 explicitly, and is given by g = —%(1 +¢)2.)

- 5 Similarly one sees that the flip bifurcation point (f;, 0) extends to a curve joining ¢ = 0 to
T (O € =1, possibly passing through codimension two flip points on the way, and possibly con-
= w taining loops. (Again, for the Hénon map this curve is known to be # = $(1+¢)2) The other

bifurcations are dealt with in a similar manner. For each bifurcation point on the y-axis there
is an open dense set & of families for which the bifurcation point extends to a curve in the
(u, €)-plane. The only way in which a bifurcation curve can avoid reaching the line ¢ = 1,
is for it to be a fold bifurcation curve which ends in a codimension two flip bifurcation. How-
ever, by considering the different configurations for the codimension two flip, one can show
that this possibility is inconsistent with our assumptions about the regularity of the one-

PHILOSOPHICAL
TRANSACTIONS
OF



http://rsta.royalsocietypublishing.org/

Y 4

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Y o

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

BIFURCATIONS OF MAPS 63

dimensional family. For ¢ = 0, all folds and flips occur ‘to the right’ (with increasing x) and
the flips are supercritical. In particular, if a curve of folds of period 2k originating on ¢ = 0
ends in a codimension two flip of a period £ orbit, then the associated curve of flips cannot
itself originate on € = 0, since this would violate the regularity assumption outlined above.
Other possibilities involving combinations of codimension two bifurcations, such as that of
a curve of folds meeting a curve of flips which does not originate on ¢ = 0, can similarly be
shown to be inconsistent with our regularity assumptions for f, and with the existence of a
full 2-shift for x large.

By considering the intersection of the sets & for all bifurcations in the one-dimensional
family, we arrive at a residual subset of regular families in which all the bifurcation points on
the p-axis extend to curves which reach ¢ = 1.

We summarize the arguments above in the following:

PrOPOSITION 3.1. Suppose that F,  is a regular family which satisfies (3.2).

(a) If f, has a fold bifurcation for an orbit of period k at p, then there is a bifurcation curve P in the
(u, €)-plane joining (py, 0) to the line € = 1 so that, except possibly at isolated points of P where F,,
has a cusp bifurcation, F, . has a fold bifurcation along any path transverse to P. P is a smooth one-
manifold except at the isolated points where it is a cusp.

() If f, has a flip bifurcation at p, then there is a bifurcation curve P joining (u,, 0) fo the line e = 1
so that, except possibly at isolated points of P where F, . has a flip bifurcation of codimension two, F,.
has a flip bifurcation along any path transverse to P. Apart from self intersections, P is a smooth one-
manifold.

As we shall see later, the different bifurcation curves cross each other in a very complicated
way as they pass from € = 0 to ¢ = 1. The points where two bifurcation curves intersect are,
of course, parameter values where two distinct bifurcations occur simultaneously, in different
parts of the phase plane. However, there are certain bifurcation curves that cannot intersect.
Recall from the previous section that each fold bifurcation of £, is followed by an infinite
sequence of flips; clearly the associated bifurcation curves do not intersect, and the two-
dimensional map thus has sequences of period doubling bifurcations (infinite sequences if we
assume the bifurcation curves extend uniformly to a finite value of ¢ without encountering any
codimension two points).

In fact, from our transversality assumptions for F, . it is clear that between any two con-
secutive flip bifurcations which arise from the initial period doubling sequence for Ju» the
non-wandering sets of %, o and F, , are identical for ¢ sufficiently small. Thus, for any finite
N we can find an ¢, > 0 so that for any fixed € € (0, ¢,) the one-parameter family F,  has N
successive flip bifurcations as p increases from s,(¢), in the same manner as F, o, before any
bifurcations of a different type occur. We now consider in detail this initial bifurcation sequence
and construct a two dimensional analogue of f,, the one-dimensional map at the first (Feigen-
baum) accumulation point.

The first bifurcation to occur, which we assume to be at s,(€), is obviously a fold bifurcation,
creating a saddle ¢ and a sink p. This is followed by a flip bifurcation at f;(¢) in which the sink
changes to a saddle and throws off a sink of period two. In order for this to happen, the eigen-
values of p have to pass (continuously) from +1 and ¢ at 5,(¢) to —1 and —e at f;(¢). They do
this by first moving towards each other along the real axis, then coalescing at 4/e and splitting
into a complex conjugate pair which moves around the circle of radius /¢ in the complex
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plane. They meet again at —./e ,and then split along the real axis with one moving outwards
towards —1 and the other inwards toward —e. (Of course the motion of the eigenvalues need
not be ‘monotonic in x’, as we have assumed in this sketch.)

(a) // (b) (c)
. q
P |
<1 phase
— b portraits
NP
2 E P P
— .
= O :enval
: O eigenvalues
=w

period

(d) (e) 2 sink
W*(q)
— <«

'/p—q>—

| | —é—

Ficure 6. Period doubling in the plane.
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The corresponding phase portraits are shown in figure 6. Immediately after the fold bifur-
cation one branch of the unstable manifold of the saddle W"(p), ends at the sink ¢ and is
tangent there to the eigenvector of the larger eigenvalue. As g increases, the order of contact
of Wy (p) with this eigenspace gradually falls until, when the eigenvalues of ¢ coincide, ¢
becomes an improper node with a single real eigenvector, and W4(p) has only quadratic
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BIFURCATIONS OF MAPS 65

contact with this eigenvector. As the eigenvalues move out into the complex plane ¢ becomes
a spiral sink and Wu(p) spirals into ¢. Next, when the eigenvalues become real and negative,
¢ once more has two eigenvectors and the strong stable manifold W*(q), which is tangent to
the eigenvector corresponding to the smaller eigenvalue, has to intersect Wu(p) asshown in
figure 6d. Finally, the flip bifurcation occurs and we have the situation of figure 6e.

(@) (6)

D; D¢
 { [

S|
QY

Ficure 7. The construction of G. (@) The disc D and the flow ¢,. (b) The discs D}, D3.

As p crosses the next bifurcation curve, where the sink of period two has a flip bifurcation,
this sequence of events is repeated. The eigenvalues of the period 2 sink follow a path similar
to that for the eigenvalues of ¢, except that their product is €2 rather than ¢, and the unstable
manifold of ¢ begins to spiral around the period two points (see figure 6 f) before they become
unstable (figure 6g).

Clearly this process can be repeated any finite number of times, and we now show how to
construct a sequence of maps G, of the unit disc D = R? which have the same structure as
F, . after the nth flip bifurcation. The sequence G, converges to a C! diffeomorphism of the
disc whose non-wandering set is analogous to that of f, at the first Feigenbaum point.

ProrosiTioN 3.2. There is a sequence of C® maps G,:D — D, with each G, a diffeomorphism
onto its image, so that (1) the periodic points of G, consist of one hyperbolic saddle of period 2% for each
k=0,1,...,n, plus a hyperbolic sink of period 2"+1; and (2) if py is a saddle of period 2% then for
each j = k+1, ..., n the intersection of the unstable manifold W¥(py) with the stable manifold W*(p;)
is non-empty and transverse. All other intersection of stable and unstable manifolds of the saddles are empty.

The sequence {G,} converges in the CX topology to a diffeomorphism G whose non-wandering set consists
of a hyperbolic saddle of period 2% for each k = 0, 1, ..., and a Cantor set K on which G is conjugate to
the base two adding machine.

Progf. We give only a sketch of the construction, which is similar to that of Bowen & Franks
(1976) (see also Narasimhan 1979). A detailed proof of the properties of the sequence G, and
its convergence may be found in Whitley (1983).

To construct G, we first take a smooth flow @, on D with a phase portrait like figure 7a.
The flow is chosen to be invariant under rotations by © about the origin, and to have three
fixed points: a saddle at the origin and two sinks at (0, +}).

Now choose a time 7; and let g, be the time 7; map of ¢,. If we compose g, with a rotation
through © about the origin, R,, we then have a map G, = R, 0 g, with a fixed saddle and a
sink of period two, which looks similar to F, . after the first flip bifurcation. However, before
the sink of period two undergoes its flip bifurcation, the unstable manifold of the saddle should
begin to spiral into the sink. We accomplish this for our map G, as follows.

Take two discs D} and D} of radius %, and in each of them define a flow ¢, whose phase

5 Vol. 311. A
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portrait is a scaled down version of ¢, (see ﬁgure 7). Let g, be the time 7; map of ¢,. Place
the discs Df in D, centred at the points (0, + 1), so that the ‘axis’ of Di, i.e. the line containing
the fixed points of ¢,, makes an angle of 4in with the positive y-axis (cf. figure 75).
Next take two smaller discs Di, i = 1,2, of radius 4, inside the Di, with the same centres,
and let 4% denote the closed annulus 4f = Di —Int (D). Choose a C* bump function
w( {1 if xeDiy D2
o if x¢DiyD?
where, in polar coordinates (r, §) at the centre of Di, ¥ depends only on 7 throughout the
annulus 4%. Then, in a neighbourhood of Di, we may put Y(r, 0) = (®(r), 0), where

o(r) = {1 if 7| <
0 if |r7] > 1.
We now define
G, = (1-Y)Gy+ ¥Ry, 0R, 0 g,
where Ry,:D} U Di - D} U D} denotes rotation through 3 about the centre of Dj, i = 1, 2.

The map G has a fixed saddle at the origin, a saddle of period two at (0, +}) and a sink of
period four inside D} u D2. The times Ty and T; may be chosen so that the unstable manifold
of the fixed saddle spirals around the periodic points in precisely the same manner as in F, ,
after the second flip bifurcation (cf. figure 6), and also so that it intersects the stable manifold
of the period two saddle transversely.

Iterating this construction, one produces a sequence of maps G, with the same features as
in the period-doubling sequence for F, , and it is possible to arrange that the sequence G,
converges to a C! diffeomorphism G with the desired non-wandering set.

We note that this example is only a C! diffecomorphism (Whitley 1983): it is not C2, and we
suspect that there is no smoother map with an equivalent non-wandering set. This is because,
in order not to intersect their own stable manifolds, the unstable manifolds of the saddles of
period 2% have to wrap increasingly tightly around the saddles of period 2%+, In a family such
as I, . it is clear that such homoclinic intersections could be formed at any stage after the orbit
of period 2* has undergone its flip bifurcation. As an (apparently) extreme example, one could
imagine homoclinic intersections between the stable and unstable manifolds of the original
saddle point p being created at any stage in the period-doubling sequence. In fact, we show
in §4 that in the family F, . with e sufficiently close to ¢ = 1, these particular intersections are
actually formed before the first flip bifurcation occurs at the sink g.

3.2. Homoclinic bifurcations

We now show that the homoclinic bifurcations which create the homoclinic orbits to the
saddles of period 21 in the previous discussion occur along curves which intersect the p-axis
at the points ky at which, in the one-dimensional map f, iterate number (2! 4 1) of the critical
points falls on the orbit of period 2!-. In fact, we show that a homoclinic bifurcation curve
originates at each point (A, 0) (cf. Van Strien 1982). It is clear that with a more detailed
argument, one could also show that a homoclinic bifurcation curve passes through each point
(h, 0) where some iterate of f;, maps the critical point onto an unstable periodic orbit, although
we do not do this here.

PROPOSITION 3.3. Suppose that p() is the periodic point of period 2k for which f7y, (0) = p(hn),
JSor some (least) iterate n, and suppose that (0/3u) (f5(0) —p())|p=niy, # O
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Then there is an €y> 0 so that for each e € (0, ¢): (a) for u near Ky, F, . has a periodic saddle
b, €) of period 212k with p(p,0) = p(p); and (b) there is a continuous curve hzzk( €) with h}u,(0) = hly,
so that the stable and unstable manifolds of p(hiu,(€), €) have a tangency.

Our assumption that the image of the critical point of f, passes through p(x) with non-zero
speed is slightly stronger than our earlier assumption that f, is versal, and it seems very diffi-
cult to verify in examples, except for low period orbits. However, it does hold for a residual
subset of maps and we shall henceforth assume that it holds for our family f,.

Proof. Conclusion (a) follows immediately from the Implicit Function Theorem.

For (b) we define g.:1 - R? by g.(#) = F(;, (0, ,(0)) and let M, = {(u, W*(p(u, €))} = R3.
The hypothesis that the nth iterate of the critical point passes transversely through the periodic
point at # = Ay, as g varies implies that g, is transverse to M at (hly, p(hy, 0)). Thus for small
€, g, intersects M transversely at a nearby point. We now choose small balls B,(g.(#,)) and
B.(g.(2)), 1 < My < pa, whose radii are independent of €, and which lie on opposite sides
of Ws(p(p, €)) for all sufficiently small e.

Now for u < hy,, 2, is contained in 2% disjoint subintervals J;(#), ¢ = 1, ..., 2%, each of
which is bounded by a point in the orbit of p(u), {5(p(%))}#*, and one of the immediate pre-
images of these points, i.e. one of the points p;, 7 = 1, ..., 21k, with p, # fi(p(s)) and
Su(p:) =S (p(n)). When g = hly, each J; is mapped into itself with a single fold by the
(2%)th iterate of the map. Clearly for # < hly, and e small the stable and unstable manifolds
of p(u, €) do not intersect.

Since Fry, o(0, fuy, (0)) = p (K, 0), for any & > 0 we may choose ¢ small enough so that
B;(0, £,(0)) contains part of the unstable manifold WY (p(u, €)) for p € (py, o). As F-1is con-
tinuous, & may be chosen so that

F(By(0,£,(0))) = By(g.(1))-

Then for u € (uy, p5), B,(g.(¢)) contains a piece of WY (p(u, €)). As p varies from u, to u, this
ball crosses W8(p(u, €)), carrying with it part of the unstable manifold, and passing through
a tangency on the way.

Remarks. (i) If the periodic saddle p(u, €) persists for all € € [0, 1] and some g > p,(€), then
we can conclude that the associated homoclinic bifurcation curve hf,(€) transverses the (u, €)-
parameter plane up to € = 1, since the homoclinic orbits created on Al (e) form part of the
non-wandering set 2, . which exists for all # > %,(¢). In particular, since the kneading in-
variant is monotonic, the bifurcation curves cannot ‘double back’ to rejoin ¢ = 0.

(ii) Since the local unstable manifold of p(u, €) lies e-close to the graph y = f,(x), and f,
has a quadratic maximum, it follows that for sufficiently small e our homoclinic tangency is
quadratic. We will use this fact subsequently in our development of a model for homoclinic
bifurcations in §4.5.

Clearly there is more than one tangency as g increases through Ay, but we leave a more
detailed description of the bifurcation set near (hly, 0) to the following section. Here we note
that the bifurcation curves through the points Ay, contain the homoclinic bifurcations that
interrupt the period-doubling sequence of F, , ¢ # 0. The period-doubling sequence for f,
does carry over to the two-dimensional map, with the flip bifurcation curves for F, , accumu-
lating, at the universal rate (cf. Collet & Eckmann 19804), on a curve F, (¢) passing through the
first Feigenbaum point (£}, 0). However, the points (/y, 0) accumulate on (F, 0) from above,

5-2
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68 P. HOLMES AND D. WHITLEY

and the homoclinic bifurcation curves emanating from them tend to stray across #(e), intro-
ducing extra non-wandering points before the period-doubling sequence for F, . is completed.

In the following sections we will give more information on the global structure of the bifur-
cation set for ¢ € [0, 1], especially concerning the crossing of various bifurcation curves. Rather
than attempt to enumerate all the possibilities we will concentrate on describing a model for
the creation of a horseshoe in which only essential bifurcations occur. For example, we wish to
exclude the possibility that periodic points are first created and then destroyed as g increases
with ¢ fixed. We therefore adopt the following as a working assumption.

All bifurcation curves, both of periodic and homoclinic orbits, are graphs of continuous
functions u(e), € € [0, 1]. Thus we assume all the bifurcation curves extend from ¢ = 0 to
e = 11in the most straightforward way and that codimension two flip bifurcations are excluded.
However cusp (pitchfork) bifurcations can still occur; in fact in the next two sections we shall
see that such bifurcations must occur as e increases.

We shall call a family F, . which satisfies these conditions as well as those detailed earlier
in this section, a regular, versal family. For such a family, as 4 increases for any fixed € € [0, 1]
the numbers of periodic orbits, homoclinic orbits and other elements of £, . increase mono-
tonically. More precise definitions and assumptions will be given in the following sections.

4. HOMOCLINIC BIFURCATIONS OF THE PLANAR MAP

In this section we show that, from each of the bifurcation points g = hly, for the map f,
there grows a ‘tangled Cantor fan’ consisting of uncountably many curves which traverse the
(u, €) plane between ¢ = 0 and ¢ = 1. On each curve a distinct homoclinic bifurcation occurs,
and, while on each constant ¢ slice, one ‘generically’ expects all such bifurcations to involve
quadratic tangencies of stable and unstable manifolds of a particular periodic orbit of F, ,,
we show that countably many tangencies of cubic type occur. We are able to give a partial
description of the homoclinic bifurcations occurring on the curves within the fan and the
genealogies of the orbits created thereby, and we discuss four distinct ‘signatures’ of quadratic
homoclinic tangencies that occur on these curves for € € (0, 1).

4.1. Homoclinic bifurcations for F, ., |¢| small

In §3 we showed that, from each point g = A, a bifurcation curve x = hjy(€) emerges
such that the stable and unstable manifolds of a point of period 2:-1k (or period £ if [ = 0)
for F] , have a tangency of quadratic type. The work outlined in §2 shows that for u = ke,
the map f, has an attracting set consisting of 2% subintervals and that, on each such subinterval,
(fi)?#* is conjugate to f; |, (or g,|[—1, 1]). Thus we can essentially reduce our study of all
these bifurcation points to that of the final bifurcation point g = #;. However, we shall see
that the asymptotic forms of the bifurcation sets depend on (j, k, [) as € — 0 for 4 ~ hiy.

We first describe the situation for # ~ h, and ¢ > 0, small. Consider the stable and unstable
manifolds W&(p), W2(p) of thesaddle pointp ~ ( —a, —a). Choose u = hy(€) so that W5(p), W3(p)
are tangent at the points gy = (0, a) and p; & (a, —a) (here @ = f;,(0)), and let this tangency
be the first such encountered as x is increased with ¢ fixed; i.e. for 4 < k,(€) there are no homo-
clinic orbits to p while for g > k;(€) there are at least two. See figure 8a. For F, ¢, ., the
arc pp_,poq—1p1 of W(p), which lies e-close to the curve y = f;, (x), is mapped into the doubled
curve ppoprqobs- Here the points p; lie on the (non-transverse) homoclinic orbit. If the area of
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figure pp_,pog_1p is A then that of its image ppop,qopep is €4, since det DF, . = €. Thus the
width of the folded image of 4 is of O(e), its length being approximately 44. Equivalently the
distance d, from p, to ¢, is of O(e), since p, and ¢, are images of the points p_, and ¢_,, which
have y-coordinates e-close to zero. Hence p, and ¢, have x-coordinates ¢-close to zero and the
distance d; between their images p,, ¢, is also of O(e). For example, if f, = u —#? then we have

Ficure 8. Stable and unstable manifolds of the saddle point p = (—a, a) for F, ., € > 0, small.
(a) The first tangency g = hy(€). (b) The last tangency, g =#h, (€).

h=h=2,p,, g4~ (F2,0), and d_; ~ 2,/2. Consequently we find p,, ¢o ~ (0,2 +4/2¢),
b 1 & (2+4/2€6, 2— (2 1£4/26)?), dy ~ 24/2¢ and d; ~ 2,/34e.

Now the points p; and g; are chosen to lic on the homoclinic orbits created in the first and
last tangencies respectively; figure 85. It follows that, if p, and ¢, move up monotonically as
J increases for fixed ¢, there will be a gap between the first and last bifurcation values g = £,(¢)
and £, (e). But since p, and ¢, lie e-close to the critical point (0, £,(0)) of the graph y = f,(x),
and we have already assumed that [9f,/0x](0) # 0 for our family (cf. proposition 3.3), they
do indeed move up at a finite rate. It follows immediately that the interval £, (¢) — A, (¢) between
the first and last homoclinic tangencies is of length ce + O(e?), where ¢ is an O(1) constant
depending on [3f,(0)/0u] s,

Moreover, even in the rough sketches of figure 8 we see that two further homoclinic tangen-
cies must occur between A,(e) and #4,(€), as the points 7y and 5, pass up through the top most
loop of the stable manifold near (0, 4). In fact for e sufficiently small, depending on =, iterating
the arc pp,p, gop. of the local unstable manifold produces at each step a further 27 arcs between
po and gq, of which 7, and s, are but the first. If [0%f,/0y%],_, # 0 then all these arcs are locally
like parabolas, and lead to quadratic homoclinic tangencies. Moreover, after n iterates the
image of the figure pp_,poq_1p1p of area A4 of figure 84 is a ‘rectangle’ of length 2427, folded
2" —1 times. (In figure 84 its second image is shaded.) Its area is "4 and thus each component
of F}, .(4) n {x = 0} is an interval of length O((}¢)").

It is tempting to say that a Cantor set of such arcs, and their attendant homoclinic tangen-
cies, can be constructed by taking such a process to the limit. This is unfortunately incorrect,
since for u € [A,(€), hy(¢)) and any € > 0 there is an integer N such that the Nth image of the
arc containing g, lies above the line y = 0. Image number (N +1) of this arc then lies to the
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right of x = 0, thereby depriving the Cantor set construction of a middle interval for removal.
However, if we pick g > %;(¢), then all future images of arcs between p, and ¢, created in
previous iterations of ppop,q,ps do lie below y = 0 and we can pick a ‘vertical’ curve ¥"(u)
passing through p,, 7, 59, ¢ such that Wv(p) n ¥"(u) is a Cantor set. Each point % in this
Cantor set forms the top of an arc of Wv(p) which intersects the top most loop of W*(p) in
two transverse homoclinic points A+, A=, one on each side of ¥’(u); A+ and A~ are uniquely
defined as the two homoclinic points which bound the shortest arc of W?(p) containing A.

Let # denote an endpoint of a closed interval remaining after z steps in the construction of
the Cantor set W(p) n # (). The discussion above shows that, for e sufficiently small, as u
decreases from #,(¢) the pair of points i+, 2~ and the point % coalesce into a single, non-
transverse homoclinic point. Moreover, since the manifolds depend smoothly upon the para-
meters u, ¢ (for € > 0), the curves ¥"(x) can be fitted together and extended for x < 4,(€) to
form a smooth ‘vertical’ surface ¥ in (x, y, #) space in which the 2» such non-transverse
homoclinic points lie.

That part of the top most loop of W3(p) bounded by the left- and right-most homoclinic
points can be made horizontal by a local y-dependent change of coordinates, so that each slice
¥ (u) of ¥ is strictly vertical. On ¥ the points at which tangencies occur form a set whose
projection onto the (%, y) plane has length dy ~ ce + O(e?); moreover the primary gap (7y5,)
in this set is of width O(e), since the distances p_;7_, and s_,q_; are of O(e) (see figure 8a).
Proceeding iteratively as above we see that the homoclinic bifurcation set is asymptotically as
¢—>0 a middle—a Cantor set for which a = a(e) = 1 —2¢ce. The support of the set is an
interval of length ce+ O(e?). As p increases this set is transported vertically at finite speed
K ~ [9f,(0)/0u] s=p,» remaining rigid to first order. Thus, in (#, ¢) space, the homoclinic
bifurcation set for the fixed point p of F, , is asymptotic to a Cantor fan over the point (%, 0):
topologically the product of a unit interval and a Cantor set, pinched at one end to a point.
In §§4.3 and 4.4 we shall return to the global structure of the bifurcation set for larger ¢ and
show that the curves in it must intersect one another as € increases, leading to our tangled
Cantor fan.

Before formulating our first main result we briefly discuss a further set of homoclinic bifur-
cations: those associated with the point # = A,. The map f;, has the property that f3 (0) = b
is an unstable fixed point. (For the map f, = u—y?* this occurs at 4 = hy, = 1.5437.) Thus
F, . has homoclinic bifurcations for the saddle point ¢ ~ (b, ) on a curve u = hy(¢) with
hy(€) = hy as € - 0. Let ky(¢) be the curve on which the first such homoclinic orbits occur as
4 increases. In figure 9 we show the local stable and unstable manifolds Wi.(g), Wise(g) and
iterates of them. The points a4y, ..., &, have images a,, ..., h;, etc. The local stable manifold
gy « vy Coy o5 Dy - oy By lies e-close to the segment of the curve y = f; (x) between the points
(f2(0), £%(0)) and (£(0), £%(0)).

Without giving details, from the figure we can see that the lengths of the vertical intervals
e3g;3 and bydy between points at which the first and last tangencies occur are of O(e?). This
follows because fwo iterates of F, . are necessary to form the first full loop ¢d,c,6,a, of W¥(g).
Then, by arguments similar to those above, we see that the homoclinic bifurcation set of F, ,
for ¢ > 0, small and # ~ h, is asymptotically a Cantor set with support an interval of length
c,62+ 0(€?), where ¢, = [9f,(0)/0u],,-1,- Here, however, we have a middle 1 —2ce? Cantor set.
Thus we have a fan of homoclinic bifurcations in the (u, €) plane lying in a horn of width O(¢?)
bounded by curves g = hy(€), hy(€).
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We are now in a position to state the following.

THEOREM 4.1. From each point (B, 0), j, k = 1,2,...;1 =0,1,2,... in (u, €)-parameter
space there extends a fan of curves on which homoclinic bifurcations to a hyperbolic saddle of period 2'-1k
occur for F, .. (For I = 0, read period k). As € — O the bifurcation set is asymplotic to a middle 1 — 2¢e?'®
Cantor set constructed on an interval of length ce¥*, where ¢ = c(hly,) depends on j, k, 1.

Co
. A
/
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{ bofa O (1) sk dy & €
\
\
\
* >> < ‘—y 1t WP
ag al N B 4 <t
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[E) ,' 1 bl
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Figure 9. The first homoclinic bifurcation for ¢ ~ (b, b).
(a) e (®) ‘
Ofe*'*)
(fr), r) d (£, r)
X 4 -—

p

\

Ole?*)

Figure 10. The proof of theorem 4.1.

Proof. We shall reduce the problem to the case of F, ; near (4, €) = (k, 0), considered above.
Fix j, k, ! and consider the graph of j,?z‘k . The definition of the bifurcation point g = hjy
implies that there exists an invariant subinterval J < I containing the critical point 0 for
SP%; ie. f¥%(J) = J; J is bounded at one end by a fixed point p for 2. If [ > 1, p is a point
of period 2!-1% for f, and Df? " has a negative eigenvalue; if / = 0, p is a point of period &
for f, and Df} has a positive eigenvalue. In either case, as in proposition 3.3, for e sufficiently
small (depending on £, {) there exists a hyperbolic fixed point P of F2¥ near (f;1(p), p) (where
the appropriate pre-image is chosen), the eigenvalues of DF¥* are both positive and their
product is €.

For ¢ = 0, P and its local unstable manifold W3,(P) lie on the curve y = f(x), while the
local stable manifold W§(P) is a horizontal line segment y = P. Consider the arc € of Wu(P)
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containing the critical point (0, f,(0)) and bounded by P and (f~(p), p), where the other

(non-fixed) pre-image is taken. See figure 10a. Since f*(J) n J = @, the images FJ (%) lie

close to y = f,(x) but bounded away from the critical point for 0 < n < 2%. The horizontal

width of such images is therefore reduced by a factor ¢/|f,(f#(r))| to leading order, on each

application of F. (Recall that the product of the eigenvalues of DF, (f*(r),f(r)) is €.)

Finally, after 2% iterates, the image of % returns to the neighbourhood of the critical point as

a doubled curve bounding a bent strip of width ca. de?*/T[D* | f7(f™(r))|; figure 105. Here

d = d(j, k1) is the distance between the two points (f~1(r), r) contained in % such that
S2%(r) = 0. Iterating another 2% times produces the quadrupled curve of figure 106, The -
vertical distance between the two bends of F2§% in the region marked ‘nose’ is to leading order '
de?F[TEVF [ fo f25 () [ fufi(r)] = de¥ K, (j, k, 1), since vertical distances are expanded by a

factor ca. f,(f"(r)) on each application of F, ..

Ficure 11. Further homoclinic bifurcations for F, .

We next use the assumption that Ky(j, £, 1) = [0/du] f¥%(0)|,—pu. # O i.c. the images of
the critical point keep moving for a versal family. Then, to first order, % and its image F2%(%)
also move monotomcally with speed K,. Thus, as g increases through g = A, for € sufficiently
small, the ‘nose’ of the image passes through the stable manifold in a g interval of length
de?* K, /K,. Tterating this procedure as in the discussion above, and taking e successively
smaller, produces the Cantor set of bifurcations of the theorem.

Remarks. (i) As mentioned in §2, associated with each bifurcation point of the form g = Ay,
! > 1for f,, we have a countable sequence of further bifurcation points £ > Ay, for which some
(higher) iterates of the critical point falls on an unstable orbit of period 21 %; some of these
appear in table 1; f4(0) = &, f5(0) = &, etc. These will extend to fans of homoclinic bifurcations
of width ce?* just as do the ‘primary’ ones. In figure 11 we illustrate two homoclinic bifurca-
tions for F, . occurring in such fans.

(ii) Asshown in §2, for any # > F,, f, has a hyperbolic Cantor set on which the dynamics
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is conjugate to a subshift of finite type. Consequently, for ¢ sufficiently small, F, . has a hyper-
bolic Cantor set /A whose local stable and unstable manifolds are, respectively, almost hori-
zontal line segments and curves lying close to the graph y = f,(x). The periodic points whose
homoclinic bifurcations we have just discussed lie in 4, and the unstable manifolds of these
points evidently intersect the stable manifolds of 4 transversally, so that the unstable manifolds
of the periodic points accumulate on W3(A). Thus, when homoclinic bifurcations occur for
the periodic point, heteroclinic bifurcations occur between the periodic point and 4 and
homoclinic bifurcations occur for A itself. These additional bifurcation points lie within the
fans of bifurcations found above.

4.2. Periodic and homoclinic bifurcations for F, ., e =~ 1

s €9
We now turn to the (almost) area preserving map

F/t,e(x, y) = (v, _€x+f/4(?/))’ (4.1)

with ¢ & 1, and consider some of the sequence of local and global bifurcations occurring as
p increases. We will assume that the sequence opens with a saddle-node bifurcation, closes
with a final homoclinic bifurcation and is ‘monotonic’ in the sense that all saddle-node and flip
bifurcations are supercritical. This has not been proved for any specific cases, but we note that
Devaney & Nitecki (1979) have shown that for the Hénon map ((4.1) with f, = u—3?),
there exists a curve u(e) = }(5+24/5) (1+ |e|)? such that for all # > u(¢) the non-wandering
set of (4.1) is a hyperbolic two-shift: the map has a horseshoe. (In fact for 4 > 2(1+ |e|)2, F
already has a topological horseshoe.) For this problem it is simple to compute the bifurcation
curves s,(€), f;(€), f3(¢) on which the first saddle-node and the first two flips occur: They are
given by the expressions

si(e):m = —3(1+¢)? (5:(1) = -1),
Sol€):n = §(1+¢)? (e(1) = 3), (4.2)
Jale):p = 1(6+6e+5¢%)  (fi(1) = 4).
As u moves along the line € = 1 between s,(1) and f,(1) the eigenvalues of the map
Pha=|21 g | (s3)

linearized at the elliptic fixed point, will be assumed to move monotonically with non-zero
speed around the unit circle from (1, 1) to (—1, —1). It is easy to verify that this is true for

the Hénon map, since trace (DF, ;) = —2y and the elliptic fixed point lies at
(1+mt =1, (1@t —1), (4.4)
and therefore has the eigenvalues
Ay gy = exio, } (4.5)
with O(u) = arctan {[2(1+p)} — (1+p)]/1 - (1 +p)}}. '

Moreover, it holds in general provided that [0%//0x0u] (b(#)) > O, where b(p) is the fixed
point of f, in the interior of I. We conclude that there is a dense set of # values u(p, ¢) € (—1, 3)
for which 0(u) = 2np/q with p and ¢ relatively prime and p/q < . Thus there is a dense set
of resonant bifurcations from the elliptic centre in which orbits of period ¢ for F, ; appear. From
(4.5) we obtain these bifurcation points for the Hénon map as

wp, q) = (1+T2(p, ) +2(1+ T2(p, q)) 74, (4.6)
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where 7(p, ¢) = tan (2np/q). We list some such bifurcation points in table 3 in their order
of occurrence for increasing u.

To describe the bifurcation sets and associated local phase portraits for the map in the neigh-
bourhood of such points in (x, €)-space, we use the normal form theory of Takens (1973) and
Arnol’d (1976, 1983), which we now briefly review. We change coordinates in both para-
meter and state spaces so that the bifurcation point (u(p, ¢), 1) and the bifurcating elliptic
fixed point each lie at the origin. Let G, ,(u, v) be the map expressed in these coordinates, with
v=yp—-up, g,y =e-1u=x—((1+pt-1),0 = y— (1 +p)t —1)1, so that det DG, , = ¢
and DG, ,(0, 0) has eigenvalues

A = (147 exp [ £i(2np/g+)]. (4.7)

TaBLE 3. RESONANT BIFURCATIONS FOR THE HENON MAP

b/q #(p,9)
1 -1

& —0.9635
1 —0.9453
1 —0.9142
1 —0.8590
1 —0.75
1 —0.5225
H —0.3171
1 0
z 0.4945

3 0.7135
1 1.25
3 1.9142
z 2.2725
2 2.6137
2 2.7624
L 3

We will assume ¢ > 5, to avoid the so called strong resonances. The normal form for G is then,

in complex form z = u+iv:

[3@—2)
Gopl2) = A7) 24 5 (V) FAF 4, 7) B +0(1200,  (£8)
=1

where the complex coefficients o; and £ must be computed in specific cases. Here [¢] denotes
the integer part of ¢. Putting (4.8) into polar coordinates (r, ¢) and rescaling r—>r/v (if
5,(0, 0) = Im (ay(0, 0)) < 0) or r —>—r/v (if 5,(0, 0) > 0), we obtain

AP (1+7) r+ 2042 Re{B(», 7) A(, 7) e¥}rie Yot
(¢) (¢ +2mp/q +v+ D by(v, v) Vit + Im{(A(v, v) /B (v, 7)) €2%} vha-D f*‘“’) + O

We wish to solve this equation for points of period ¢ for . > 0if b; < O or g < 0if b; > 0.
The g¢th iterate takes the form

(f) N ((1 +7)27+2[A(v, y) cos g+ B(v, ) sin ¢p] rtata-d L O(|y[a= 4 |y| IVI%‘H’))
¢ $+qr(1+b,(v, 7) 1) + O+ 7| o))

(4.9)
and making the (generic) non-degeneracy assumptions that 4;(0, 0) = Im («;(0, 0)) # 0 and

+ Plus an additional linear change of coordinates, see Appendix A.
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B(0, 0) # 0, we can use the implicit function theorem to show that (4.9) will have 2¢ fixed
point solutions for (r, ¢) provided that

7] < 2(—gv/by)a=2 |3(0, 0)|2. (4.10)

(Note that our assumpticns on x and b; guarantee that (—¢v/b;) > 0.) We therefore find two
periodic orbits of period ¢ for F, , within an Armol’d horn asymptotically close to

e = 1+2|5(0, 0)[2 [(u(p, q) — ) q/b1(0, 0)]2a-2), (4.11)

as (u, €) = (u(p, q), 1). One of the orbits is of saddle type and the other is a sink (respectively
source) if € < 1 (respectively ¢ > 1); for ¢ = 1 it is elliptic. These orbits are born on the
boundaries of the horn in saddle-node bifurcations.

In the Appendix we give the formulae needed for computation of the coefficient 4,(0, 0),
which determines the direction of bifurcation, and we carry out the computation for the Hénon
map. In this case we find that 4,(0, 0) < 0 for all z € (—1, 3), so that all the resonant bifur-
cations occur to the right of the points (#, €) = (x(p, ¢), 1). Since we are interested in describing
the ‘simplest’ model for the creation of horseshoes, we shall henceforth assume that the same
holds for our more general family F, .

In §5 we return to these resonant bifurcations and show how the boundaries of the horns
can be connected with certain saddle node bifurcations of F, , for ¢ small and hence with the
saddle-nodes (s, 0) of the one-dimensional map.

We now turn to the homoclinic bifurcations of the saddle p for e ~ 1. It is known that the
homoclinic bifurcation structures within the Arnol’d horns are extremely complicated (cf.
Aronson ¢t al. 1982) and we shall for the moment restrict our attention to the first or ‘outer’
homoclinic bifurcation. We know that the first saddle-node bifurcation occurs on the curve
5;(€). Moreover, for ¢ € (0, 1), since det DF, . = e < 1, this bifurcation takes place in a one-
dimensional centre manifold and there is a complementary one-dimensional stable manifold.
Use of invariant manifold theory (Carr 1981) permits us to conclude that one branch (the right-
hand one) of the unstable manifoln of the saddle created in this bifurcation limits in the sink,
Jor (u—s,(€)) sufficiently small and ¢ bounded away from 1 (cf. phase portrait B of figure 12). In
contrast, for ¢ = 1, it is easy to see that homoclinic orbits to the saddle must exist for all
# > 5,(1), for if they did not then the stable and unstable manifolds of the saddle would have
to lie one outside the other, and the iterated map could not then preserve areas. We conclude
that, for fixed g > s,(€), as € increases towards 1, a first homoclinic bifurcation must occur in
which the stable and unstable manifolds of the saddle p have the structure illustrated in phase
portrait C of figure 12. Generically this will be a quadratic tangency. Note that these mani-
folds have the same topological structure as those of figure 8a4. Evidently our homoclinic
bifurcation near (x4, €) = (s5,(1), 1) is the same as that growing from (u, €) = (%, 0) on the
curve h,(€).

We can say more. Use of the normal form theory near the point (s;(1), 1) reveals that, to
all algebraic orders, the Taylor series expansion of the map is conjugate to the time one flow
map of the planar vector field

L= } (4.12)
0= (p—s1(1)) —u*+y(e) (vtw); y(1) =0, '

(Takens 1974; Bogdanov 1975; Arnol’d 1976, 1983). It follows that, as # — 5,(1)* along e = 1,
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76 P. HOLMES AND D. WHITLEY

the stable and unstable manifolds of the saddle lie closer than any power of |z —s,(1)| to the
smooth homoclinic loop given by the level curve of the Hamiltonian of (4.12) for ¢ = 1:

o= (p—5(1) ut e’ = Fu—s(1)L (4.13)
We conclude that, while in the generic case terms ignored in the tail of the series expansion

will perturb this loop into transverse homoclinic intersections, such intersections can only
exist within a horn bounded by curves of the form

e = 12 R(u—s,(1)), (4.14)
where O(R(a)) < K|a|"for all z. In fact recent work of Holmes & Marsden (1983), and general

beliefs based on numerical and heuristic evidence, suggest that R(a) is of order e~“%: an
exponentially thin horn.

—e=1
40,0 _
\ wbp@ hol€)
1
k{ /
/ h1{6)
s,{€
€=0 o
81 fy fs  hy M w

Ficure 12. A partial bifurcation set for F, . with some phase portraits.

We note that the work of Devaney (1982) and Devaney & Nitecki (1979) establishes that
transversal homoclinic orbits do occur for the Hénon map on all but possibly a finite parameter
set of the line ¢ = 1, g > s,(1). The thesis of Gambaudo (1982) contains many examples of
T-periodic perturbations of vector fields and collects results on the consequent resonant and
homoclinic bifurcations in planar maps.

We now have an interesting implication: that the homoclinic bifurcation curve #,(¢) based
at (hy, 0) terminates at the point (s,(1), 1), where it is tangent to all orders to the line ¢ = 1.
Moreover, in any neighbourhood of (s,(1), 1), infinitely many resonant bifurcation curves
must cross %,(e), since they are based arbitrarily close to (sy(1), 1) for large ¢ and are tangent
to € = 1 at finite orders (¢—2). We conclude that, near (s,(1), 1), as e increases for fixed
u# > s;(€) or p increases for fixed e < 1, infinitely many saddle node bifurcations to periodic
orbits occur be¢fore the first homoclinic bifurcation to the saddle p occurs on #,(¢). In figure 12
we illustrate the partial bifurcation set and associated phase portraits. We shall return to these
sequences of saddle node bifurcations in §§4.5 and 5, and show that they accumulate on the
homoclinic bifurcation curves hly(e) for € € (0, 1).

Similar arguments show that the homoclinic bifurcation curves k,(€), ..., hy(€), ... based
at the points (y,0), ..., (1, 0),... terminate at the flip bifurcation points (f5(1),1),...,
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BIFURCATIONS OF MAPS 77

(f#(1), 1), ... at which the elliptic fixed points of period 2!-1, / > 1 become hyperbolic and
throw off elliptic fixed points of period 2'. The curves approach each such point tangent to
the ¢ = 1 line at all orders, and necessarily from the right, since the fixed point in question
is a saddle point only for g > fy(e). (Recall that we are assuming that all the flips for .
are supercritical.) Moreover, the elliptic periodic points created in the flip bifurcations must
themselves undergo the same sequences of resonant bifurcations in each interval u e (f3(1),
JSa+1(1)) as does the elliptic fixed point in (s;(1), f5(1)).

Summing up the results of this subsection, we have

ProrosiTiON 4.2. Each of the countable sequence of leftmost homoclinic bifurcation curves hy(€), ! > 0
based at the points (hy, 0) can be extended to meet the line € = 1 at the saddle node and flip points (s,(1), 1)
Jor 1= 0, and (fu(1), 1), for I > 1, respectively. For (u,€) = (hy(€),€), €€(0,1), the map F, , has
a homoclinic tangency of stable and unstable manifolds of a hyperbolic saddle of period 2'-* (of period 1
when | = 0). In any neighbourhood of the points (sy(1), 1), ..., (fu(1), 1), ... countably many resonant
saddle node bifurcation curves cross hy(€), ..., hy(€) . If the flips fy (€) for F, . are supercritical, then all
the bifurcation horns bounded by such curves lie to the right.

4.3. More homoclinic bifurcations for F,

Since the structure of homoclinic bifurcations in the fan emerging from (4, 0) is repeated
in every other fan, we will henceforth concentrate on this primary fan. We have established
that its left hand boundary #,(¢) connects the points (s,(1), 1) and (ky, 0); it may, of course
wander about and self intersect, but in accordance with our assumptions at the end of §3, let us
assume that it crosses the (u, €)-plane ‘smoothly’ as illustrated in figure 12. This is certainly
the case for the Hénon map, as El-Hamouly & Mira (1981) demonstrate numerically. Also see
our figure 23 in §6. We now turn to the other homoclinic bifurcation curves based at (%, 0).
Consider the rightmost, #,(e), first.

Our assumption that F, , has a hyperbolic two-shift for x sufficiently large implies that
h,(€) climbs to the line ¢ = 1 and terminates there at some point £,(1). For all u > k,(e), F, .
has a topological horseshoe. From Devaney & Nitecki’s (1979) results we have 4,(1) < 8,
although they establish hyperbolicity only for x4 > 5+2,/6 ~ 9.472. In fact El-Hamouly &
Mira’s (1981) results suggest 4,(1) ~ 5.78 and our own computations support this (see below).
We shall in fact assume henceforth that F, . has a hyperbolic two shift 2, for all x > hy(e).

Since between the homoclinic bifurcations on 4,(€) and #,(¢) all the iterates of pieces of the
unstable manifold of the saddle p in the region near ¥ = 0 must pass through the top most
loop of the stable manifold to ultimately generate a Cantor set of transverse homoclinic points,
each member of the Cantor fan of bifurcation curves which exists near (%,, 0) must extend
across the (u, €)-plane to intersect ¢ = 1. One expects almost all of the homoclinic tangencies
occurring on these curves to be quadratic, but it is possible to show that, for ¢ = 1, a countable
set of them must be of ‘cubic type’, i.e. bifurcations in which #kree transverse homoclinic orbits
emerge from one non-transverse orbit. This fact follows from the symmetry of the area preserv-
ing map F, (%, 9) = (y, —x+/,(y)), when f, is an even function. In that case, if {x,, y,} is
an orbit of F, ;, then it is easy to check that {y_,, x_,} is an orbit of F;}. Thus, if (%, 7) is a point
on the unstable manifold W3u(p) of the saddle p(u) = (—1—(1+p)t, —1—(1+pu)}), it follows
that (7, X) is a point on the stable manifold W#(p); W*® and W™ are reflections of each other
about the line ¥ = y.

Now let us see how homoclinic bifurcations occur for F, ; as u increases from s,(1) = 4,(1)
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78 P. HOLMES AND D. WHITLEY

to %,(1). Consider first the bifurcations corresponding to those in which the points 7, and s,
of figure 8a pass up through the uppermost segment of the stable manifold. Let ¥ = Wu(p)
be an arc containing the analogue of the point g, of figure 8a and ¥ = W5(p) be its reflection
in x = y. In figure 13 we show how these arcs move respectively up and to the right as g
increases; these portraits are computer simulations of the Hénon map for ¢ = 1. Let €Y, €}

(a) (b)

X=y

Ficure 13. Stable and unstable manifolds of p for the area preserving map F, 1(x,y) = (y, —x+/,(#))-
(@) p = 1.65 (ca. by (1)) (b) p = 3.0 (ca. hy,,(1)). (¢) How the arcs 6", éts move as f increases.

be the images F, ("), F,,1(%*). For u close to (1), " n ¢* = o and as g increases, owing
to the symmetry, the arcs first intersect on the line x = y with a common tangent along that
line. Their images intersect on the top most loop of W5(p) and it is not difficult to see that this
defines the point 7, € €Y, cf. figure 84, although here, for ¢ = 1, the distances d, and d; are
both of O(1) and the point g, is far from p,. This tangency defines a bifurcation point g = Ay,(1),
the left end point of the first interval which will be removed in constructing the Cantor set of
bifurcations.

Continuing to increase # we see that € and %® now intersect in two transverse homoclinic
points, let s = s(u) be the upper (and rightmost) one. Consider the tangents T, 7% to €, €
at 5. As p increases, 7" and T* rotate anticlockwise and clockwise respectively from 45° (at
= hyy(1)) to 135° at a peint g = hy,(1), at which €™ and % are once again tangent. A
further increase in u causes a bifurcation in which #hree transverse homoclinic points branch
from s. Comparing figure 8 with 13 we see that s plays the same role as the point s, for small e.
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BIFURCATIONS OF MAPS 79

Thus hy (1) is the homoclinic bifurcation point defining the right endpoint of the interval to
be removed from the Cantor set, and it corresponds to a homoclinic tangency of cubic type.

Similar arguments apply to every family of homoclinic orbits that contains a curve of
points #(x) (in (x, y, u)-space) on the surface ¥ = y such that the tangent to W9(p) is normal
to x = y for some ¢(#*). The symmetry implies that every point contained in W¥(p) n {x = y}
is a homoclinic point, and is necessarily non-transverse if the tangent is normal to x = .
To check that there is a bifurcation from one to three (transverse) homoclinic orbits at such
points we need merely check that the tangents vary continuously with #. Devaney & Nitecki’s
(1979) results imply that, for g sufficiently large, all homoclinic orbits are transverse and all
bifurcations have occurred, while for x# sufficiently close to s,(1) = A,(1) countably many of
the orbits in question have not yet been created. Since the manifolds (and their tangents at
points on x = y) vary smoothly with # we conclude that there must be a countable set of
homoclinic bifurcations of cubic type. This proves

ProposiTION 4.3. As p increases from hy(1) to k(1) for € = 1 there is a countable sequence of
homoclinic bifurcations of cubic type.

Although it is implicit in our assumption that F, , is a regular versal family, we have not
been able to prove that all these cubic bifurcations are supercritical in that the number of
homoclinic orbits always increases at each bifurcation point. However, we shall assume this
and shall further assume that, for ¢ < 1, these cubic bifurcations become quadratic. Thus
we arrive at the simplest model of the primary homoclinic bifurcation set for 7, .. However,
before unveiling this model we show that the structure of the fan is not that of the Cantor fan
to which it is asymptotic as € - 0. Rather, we shall see that infinitely many of the bifurcation
curves growing from (4;, 0) necessarily intersect each other as ¢ increases, even under our
‘simplest case’ assumptions, and that further tangencies of cubic type must occur for € € (0, 1).

4.4. The tangled homoclinic fan for F,

To demonstrate why the homoclinic bifurcation curves must cross, let € increase from 0 to
1, keeping the point (u, €) on a given bifurcation curve, say that connecting the points (4, 0)
and (s5y(1), 1). For esmall, the loops of W"(p) are all e-close to a segment of the curve y = £, () ;
in particular, there are infinitely many arcs of W9(p) crossing a line connecting the homoclinic
tangent point r, and the point ¢;, where the last homoclinic tangency will occur at g = £(e).
There are also infinitely many ‘quasi-horizontal’ segments of 5(p) crossing the line connecting
r; and ¢;. To see this, we observe that there is a (least) integer £ such that the kth pre-image
7_y = F%(ry) of 7y lies on the rightmost segment of W5(p). (r_, in figure 14). Successive pre-
images of 7_, then accumulate on p along the leftmost segment of W9(p): as they do so, in-
finitely many pre-images of portions of the arcs A r_;, B (figure 14) of W*(p) fall across the line
connecting r, and ¢;. The y coordinates of points in these segments are independent of ¢ at
leading order. In contrast, the discussion at the beginning of this section shows that, as e - 0,
the points ¢; and s, and the attendant arcs of W?(p) approach r; at a rate linear in e. These
arcs must therefore cross the segments of W5(p), leading to a countable set of ‘secondary’
homoclinic tangencies. This argument can be repeated on each bifurcation curve based at
(hy, 0) except the two outer ones k,(e) and £,(e), since in those cases all the segments of W3(p)
lie outside W (p), or all the arcs of WU (p) lie below the tangency point ¢, respectively. (These
curves form the limits of the homoclinic bifurcation set.) We therefore have
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ProposiTION 4.4. On each homoclinic bifurcation curve within the interior of the primary fan bounded
by hy(€), hy(€) there is a further countable set of homoclinic bifurcation points. For such parameter values,
two distinct non-transverse homoclinic orbits exist simultaneously.

However, we note that while each of these ‘secondary’ homoclinic bifurcation points
1 € hy,y(e) (for example) extends to a bifurcation curve #§(e) that generically crosses the

Dy

Ll KRN
> 1/ //AaimN\N\N\\\\\
3

r

—

-

—

AT [T 52 imminent
a tangency
A il
B al JRNAN
[ cmnn il 1\\\
P AWM W\
. _— LR\Y

p ) n more tangencies
coming as € >0

y

Ficure 14. More homoclinic tangencies for F, ., the top most branch & () < W*(p) is defined in the
text below, and the role of the arc Ar_, B is explained in the text.

primary homoclinic bifurcation curve A, ;(¢) transversely, 4§(e) is not a ‘new’ bifurcation curve.
In fact as € > 0/5(e), hy,1(€) = hy: the results of §4.1 imply that the bifurcation curves ‘un-
tangle’"as ¢ decreases so that the set is asymptotic to a Cantor fan. We must now address the
creation of the homoclinic orbits in more detail.

First some definitions. Let # > %, (¢) and fix € € (0, 1]. Recall that p = p(u) is the saddle
point on the left. The top most loop & (u) < W3(p) is the arc bounded by the points a_,(#), ay(#),
where F; (a_y) = F, (a,) = (0,9,) is the lowest point on W5(p) n {x = 0}. The topmost loop
U(u) = Wu(p) is the arc bounded by the saddle point p and the right most homoclinic point
lying on the arc pa, = W5(p). Note that %(u) intersects & (u) in two transverse homoclinic
points A+ (left) and A~ (right) for # > k,(e), figure 15a. Since the invariant manifolds depend
smoothly on s, the arcs & (u), % (1) and their images under F, F-! form smooth two-manifolds
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&, U in (x, y, p)-space. Of course % does not exist for 4 < h,(e), since the homoclinic points
h*, h~ and their images coalesce and vanish at g = A, (e€).
Now suppose s > k(€), so that F, . has a hyperbolic two shift, and consider the set € (x) =

(Unso F™(% (1)) 0 & (u) (the overbar denotes closure).

y
A Kk U vy
F
Ul p)
h W ~o FEU)
ay L (w
AN
b V.
(10 V+ /
— %%
w4
—— \J
P / i
(0,9,)

Ficure 15. The arcs %(p), & (1) and Fj (S (4))-

LemMa 4.5. For p > hy(€), €(u) is a Cantor set of transverse homoclinic points.

Proof. 'The fact that F, . has a horseshoe implies that F(%(u)) intersects & (x) in four points
k*, k', ki, k= that form the upper left and right corners respectively for two closed ‘vertical’
strips V,, V. (cf. Moser 1973), figure 155. Iterating further it is easy to see that Fr»(V_u V)
intersects & (u) in 2" closed intervals, the lengths of which decrease by a factor ¢ < 1 at each
iterate, due to the hyperbolicity. The boundaries of these intervals are the points

(Vino FE(% (1)) 0 ().

Proceeding to the limit and taking the closure, we have the required Cantor set.

We next index the transverse homoclinic points in %(x) using the natural symbol sequences
inherited from the two-sided shift on the symbols +, —. Specifically, let ¥"(x) be a ‘vertical’
line which lies between the strips V,, V.. Next let a(h) = {a;(h)}}>_,, be a sequence of the
symbols + corresponding to the homoclinic point & € €(x), generated by the rule

+ if Fi(h) lies to the left of ¥ (),

h) =
4 () {— if F7(h) lies to the right of ¥ (u).

In accordance with our terminology for one-dimensional maps, we shall call a(k) the itinerary
of &, noting however that it is doubly infinite, since F, , is invertible for ¢ # 0. Note that the
2" ‘new’ homoclinic points generated at the nth stage of our construction (those lying in
(F(U(p)) —FY(U(p))) N & (w)) have itineraries of the form ... + +a_,a_, ;... a_j89— + ...,
containing a non-trivial ‘central’ blocks of length n+ 2. We call these the nth stage homoclinic
points. We also note that a_, is always the symbol —.

The homoclinic points &€ € (u) can be ordered from left to right on & () by using an

6 Vol. g11. A
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adaptation of the invariant coordinate for the one dimensional map. We define the inverse
coordinate 0-(h) for a point & € €(u) from its itinerary a(k) as 0-(h) = {05 (h)}i2, where

j
05 (h) = .1;[0 a_;(h). (4.15)
We then have

LeMMA 4.6. The lexicographical ordering on inverse coordinates determines the order of the homoclinic
points on &2 if 0-(h) > 0—(1) then h lies to the left of 1.

(] 1 (| (] 1!

+4+ 1 I ++ ++ 1 1 ++ [ | 1o 1y ! !
+4+ + + ++ | [ I T TR SN [ | o1t 1 ++ 1 |
+4+ + + 11+ + 1L 1 +4+1 1+ 4+ g ! [ T I S
+1 + 1 1+ + 1+ 1 i+ 1+ 1 o+ 1L+ 4+ 41 1+
[ | ot [ T I | [ [ I | [ I e 1

e o P e fmed e I ] bed g bed ped (=

v \ V4 Vv Vv \ \Y}

4 3 3 4 2 2 4 3 3 4 1 1 4 3 3 4 2 2 4 3 3

Ficure 16. Central blocks of itineraries of homoclinic orbits.

Proof. Let two coordinates 8—(k), 0-(/) differ first at the kth symbol, suppose 65 (k) = +,
0 () = —. Thus each pair of points F~/(h), F-i(l) lies on the same side of ¥ for 0 < j < k—1.
Suppose first that each orbit visits the right side an even number of times between £ —1 and 0.
Then each sequence has an even number of signs and the itineraries have kth symbolsa_g (%) = +,
a_(l) = —. Thus F%(h) lies to the left of F*(I). But since each orbit makes an even number of
visits to the right side, % also lies to the left of /. If there is an odd number of visits then
a_y(h) = —, a_(l) =+ and F*(k) lies to the right of F-*(l); however the net effect of F* is
now to reverse orientation and we will have 4 to the left of /.

We can therefore use the inverse coordinates to attach the correct itineraries to the homo-
clinic points in & (). Figure 16 shows those up to the fourth stage.

We can, of course, extend the concept of double-sided itineraries and inverse coordinates
to any of the points ¢ contained in the non-wandering set 2, . of F,  for 4 > k(¢). In particu-
lar, we shall use those associated with periodic orbits in §5.

We next let x4 decrease and consider how the homoclinic orbits coalesce and vanish. By the
implicit function theorem, each of the homoclinic points # € #(u) extends to a unique, smooth
curve h(p) = & for p > hy(e), but for g < ky(€) pairs of these curves join to form loops. The
points where the projections of such loops onto the 4 axis are not locally 1:1 are the homo-
clinic bifurcation points. We call the loops homoclinic bifurcation diagrams. For example, the
points A, (€), hy ,(€), hy,,.(€), k() referred to above correspond to loops connecting the points
+—-y—-——;—-—++—-;—-+—-——; ——+—, ————and — + —, — — — respectively, figure
17a. Note that our cubic tangency results of §4.3 implies that, for ¢ = 1 these loops intersect
as indicated in figure 175. Here and henceforth we continue to identify the transverse homo-
clinic points which persist for x € (h,(¢), £,(€)) by the itineraries which they have for g > £,(€),
although we recognize that the meaning of these sequences is unclear: there is no unique ana-
logue for F, , of the critical point which permits the definition of itineraries for f,. However,
in §5 we shall extend the definition of itineraries uniquely for certain points of £, . to the range

p € (hy(e), hy(e))-

-—— = -
-+ ++- -

»(I
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BIFURCATIONS OF MAPS 83

Our assumption of §3 that F, . is a regular versal family includes the assumption that the
number of homoclinic points is monotone increasing with g for each fixed e e (0, 1]. This
implies that for each pair of homoclinic orbits there is precisely one bifurcation point on &,
giving a Cantor set of such points. However, the projection of this set onto the g axis is not
always 1:1, since homoclinic bifurcations can coincide, by proposition 4.4. However, recalling

(@) ()

- -
- -

- - -

Ficure 17. Some homoclinic bifurcation diagrams. (a) € < 1. (b) € = 1.

that we found these bifurcations by varying ¢, keeping 4 = hf(¢) a homoclinic bifurcation
point, we see that for a versal family these coincident bifurcations occur for at most a countable
set & < (0, 1] of parameters ¢ for which the quasi-horizontal segments of W*(p) and certain
arcs of Wu(p) in the proof of proposition 4.4 are tangent. Removing this set, and the analogous
sets for all other homoclinic bifurcation curves, we are left with a residual subset & < (0, 1]
for which the projection is 1:1. We then have

ProrosiTiON 4.7. For each €y € & fixed, the primary homoclinic bifurcation set intersects ¢ = €,
in a Cantor set.

The values 4 = h(¢), € € & for which this fails are evidently points at which homoclinic
bifurcation curves in the fan cross. To see how the order of the homoclinic bifurcations can
change as ¢ increases, we return to figure 14 and consider the positions of the loops of Wu(p)
containing the points s, g5 = FZ . (so), F§ .(¢o) relative to the top most loop & () < Ws(p).
The arguments of §4.1 show that, for sufficiently small ¢, both s; and ¢ must lie close to 73
and below &(u). Now keep u = h,,(¢), so that homoclinic tangencies r; persist, and let ¢
increase so that s, and ¢, rise relative to r,. The results of §4.3 for the area preserving case
show that there exist values ¢ € (0, 1) such that g3 and s; lie in & (u), first to the left of 7,, then
to the right. The two loops ‘unravel’, leading to four bifurcation points in which eight trans-
verse homoclinic orbits vanish.

We now examine the bifurcation diagrams corresponding to these orbits. For simplicity we
take only the loop containing g;. For small € and u € £, ;(¢) there are evidently four transverse
homoclinic orbits with itineraries having the central blocks — — — + + —, — 4+ — 4+ + —,
-+ —+ ——and — — — 4+ — —, reading from left to right (cf. figure 18). In this case, letting
u decrease, we find the bifurcation diagram of figure 184 in which the two relevant bifurcation

6-2
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points are labelled A(— — — + + —), A(— + — + + —), indicating the genealogy of the orbits.
In contrast, for ¢ large, no such bifurcations occur for g < £y ,;(€). In this case, then, let g
increase so that the point ¢g; moves up to first cross &(u) to the right of 7,. As it does so the two
orbits — + — + — —, — — — + — — appear, followed by the two — — — + + —, —+ -+ + —
as g, next crosses & (u) to the left of r,. We now have the bifurcation diagram of figure 184.

(a) small € (b) large €
1! 1!
1
|l :: :: -:»“'
+ [ [
+ 1 P+t +
T 1+ + 1! : 1 T:
1+ + I+:
[ [
h(-4-++-)
Rl-4-+--)

h,,l(e)

(¢) intermediate € (d)

-—— -
—t -+t~
—_—t -
_——— -

cubic

Ficure 18. Towards the homoclinic tangle. (¢)-(¢) bifurcation diagrams, () the bifurcation set.

Evidently for some intermediate value of ¢ the bifurcation diagram of figure 18¢ must occur,
implying the existence of a homoclinic tangency of cubic type in which the genealogy of the

homoclinic orbits is interchanged. Once the loops connecting — — — + + —, — — —+ — —
and — + — + + —, — + — 4+ — — are broken and replaced by loops connecting — — — + + —,
—+—+4++—and —+—+——, —— — + — — the two bifurcation curves can swing to the

right and cross 4, ,(¢), leading to the tangled Cantor fan of figure 184 (cf. figure 23).
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Since locally we can change coordinates so that W5(p) is the x-axis, the homoclinic points
can be represented as zeros of a function. The bifurcation sets of figures 184 and b correspond
to the creation of pairs of zeros from quadratic (double) roots while that of figure 18¢ corre-
sponds to the creation of three zeros from a triple root. Thus, using conventional arguments in
singularity theory, we see that in a regular versal family, one of the pair of homoclinic bifur-
cation curves necessarily contains a cusp.

The discussions at the beginning of this section show that this happens infinitely many times
for certain pairs of homoclinic orbits with longer and longer non-trivial central blocks. For
small € two such pairs bifurcate from degenerate itineraries with central blocks of the forms
——...+ — and — +... + — (with increasing u), we call these regular homoclinic bifurcations.
In contrast, for large ¢ they come from degenerate blocks of the forms — +... — — and
-+ + — in drregular homoclinic bifurcations. However, although we can appropriately
pair the itineraries which the homoclinic orbits ultimately have for # > #,(¢) to indicate
their genealogies, these itineraries do not have a straightforward interpretation for # < #,(e),
since the partition of the plane by #"(x) into left and right can no longer be carried out un-
ambigously. We shall return to this problem when we attempt to trace the bifurcation curves
for periodic orbits in §5.
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TABLE 4.
central block of itinerary stage G- bifurcation point
()£ —(+) +4+++4++.. H(€)
(+)—++++—(+) 4 -
(+)=—+++—(+) 4 e &
(+)—++x—(+) 3 tHt———
(+)——+£—(+) 3 =ttt
(+) ===+ +—(+) 4 b=
(+)—+—++—(+) 4 e
() =+ —(+) 2 +h———— #i(e)
(+) ==+ —(+) 2 Fob ettt ()
(+)—+——2—(+) 4 e
(+)——=——(+) 4 +—+—++
(+)———%—(+) 3 +—t+——-
(+)—+—%—=(+) 3 +-=+++
,“ (#)——+——(+) 4 +——t+—-
g (+)—++——(+) 4 ===+t
—~ (+)=x—=(+) 1 o —— Bale)
p—
>
@) = We can, however, order the creation of certain homoclinic orbits uniquely, using the inverse
e g coordinates 0~ associated with them. From lemma 4.6 we have a relation between the order
=  of homoclinic points on & (x) and their inverse coordinates. If we consider only those orbits
E o which undergo regular bifurcations to pairs with itineraries of the forms ..+ + —a_¢,_y ...
W

a_,*+ — + + ..., then the associated bifurcation diagrams are nested non-intersecting loops in
&. (cf. figure 18a). This shows that, if A+, [* are the left-most homoclinic points in & (x) on
two such loops, then A+ must appear before [+ as g increases. The other results of this section
then lead to:

THEOREM 4.8. For any N < oo there exists ¢(N) > 0 such that for 0 < e < e(N) the homoclinic
orbits h* to the saddle point p having itineraries of the form (+) —a_¢_y .... a1+ —(+) withn < N
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are created pairwise in 2V regular homoclinic bifurcations as p increases. The bifurcation curves p(h*, €),
w(l%, €) on which two such orbits are created are ordered as p(h*, €) < u(l%, €) (respectively > p(l*, €))
if 0-(ht) > 0-(I*) (respectively 0—(ht) < 0—(I1)).

Example. The ordering for N = 4 is given in table 4 (cf. figure 16).

We end this section by extending our discussion of regular and irregular homoclinic bifur-
cations and deducing a partial bifurcation diagram and bifurcation set for the homoclinic
orbits of stages n < 4. We refer to the area preserving case discussed in §4.3 and use the
symmetry arising from the fact that f, is even. As p increases for ¢ = 1 we observe the phase
portraits of figure 19 (also see figure 13 above). (Again we use numerical simulation of the
Hénon map, but the symmetry permits us to draw more general conclusions.) We follow the
relative positions of the arc 4, € W"(p) containing the point ¢y, and its images 4; = F'(4,)
and the arc By = W5(p), its image B, = &(u) and pre-images B_; = F-1(B;). The symmetry
implies that 4; and B_; are reflections of each other in x = y.

We now construct the bifurcation diagram for ¢ = 1. The first and second stage homoclinic
points were dealt with earlier, they are created in four homoclinic bifurcations in the pairs
+—, -4+ —, ——+ — and — + — respectively, the third being of cubic type and occurring
as the arcs 4,, B, intersect on ¥ = y (cf. figure 13, above), of the remaining four, the second
and last are regular bifurcations, apparently of quadratic type, and the first occurs simul-
taneously as the pair of fixed points is created in the saddle node (cf. §4.2).

Unfortunately, symmetry fails us in the four bifurcations leading to the eight third-stage
homoclinic orbits, since they do not contain points on x = y. Thus they can be either regular
or irregular, but we note that in either case, the corresponding two bifurcation curves do not
intersect as e varies from 0 to 1, although one of them may contain a cusp. The numerical
results of figures 194, d suggest that in each pair, the first to occur is a regular quadratic bifur-
cation and the second is cubic.

The first four fourth-stage orbits to appear, with central blocks — + + + + —, — — + + + —,
do so in regular bifurcations as the arcs 4, and B_, first meet on x = y (figure 194). The next
four fourth-stage orbits (— + — — + —, — — — — + —) to appear do so also in regular bifur-
cations as 4; and B_; next meet on x = y (figure 19¢). The symmetry implies that the last
of each of these pairs is a bifurcation of cubic type. Of the remaining eight fourth stage orbits,
the pairs — — + — + —, — + 4+ — + — appear in regular bifurcations which occur as the double
loop marked 4 of figure 19¢ rises through B, = &(u). In contrast, — + — 4 — — and
— + — 4+ + — appear in #rregular bifurcations in that order as the arc 43 containing ¢ finally
completes its winding journey. These bifurcations occur in the range 4, ,(1), £,(1) after the
first regular fourth stage bifurcations in that range, but we cannot place them more precisely.

Thus we arrive at the partial bifurcation diagram and bifurcation set of figure 19e, f.
One can iterate such a construction and hence show that for all » > 4, certain of the nth
stage homoclinic bifurcations, which are regular and occur ‘early’ in the Cantor fan for e
sufficiently small, are necessarily irregular and occur late for ¢ sufficiently close to 1. Moreover,
a similar analysis clearly extends to the fans emerging from each of the bifurcation points

( glk, O) .


http://rsta.royalsocietypublishing.org/

Y 4

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

BIFURCATIONS OF MAPS 87

<

() )

1
04342434 1 4§42 45 a0
4 g
+4+ 4+
+1 4

U Y
U 4!
?
? hl(e)

(hy,0)

Ficure 19. Towards the homoclinic bifurcation set for € = 1. (a) # = — 0.1, first 4th-stage orbits. (b) # = 0.80,
first 3rd-stage orbits (¢) # = 4.1, second 4th-stage orbits. (d) x4 = 4.9, second 3rd-stage orbits. (¢) The
bifurcation diagram. (f) The bifurcation set: a tangled Cantor fan.
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4.5. Normal forms for the homoclinic bifurcations for F, ., € € (0, 1)

We end this section with an adaptation of the results of Gavrilov & Silnikov (1972, 1973)
to the present case. They considered quadratic homoclinic tangencies and showed that such
bifurcation points are the limits of sequences of saddle-node and flip bifurcations of certain
periodic orbits. Their work is closely related to that of Newhouse (1974, 1979, 1980), who
showed that wild hyperbolic sets, whose stable and unstable manifolds exhibit persistent

< tangencies, and countable sets of stable periodic orbits can exist near homoclinic tangencies.
—
— -_S T T -
§ >" - - /—’ SN ~
~ -7 \ N
® (@) -~ \ N (b)
a5 s / \
[~ ’ [ Vim) \ %
= O {
7 \
L O \
F v \\ \ \ v,
- 1 | 7
<2 ' ’ Avim
FS LR Hm) g
— S /
g ] : / Fy™ (Hm)
Q=5 Him) / /
OZ - H(m)
T 4
o= Y
(c) {(d)
4
Vim) [ Vim)
2
A Q22222 H(m)
g >
< ! F* "™ (H(m)
~d
- ’Z i \
T /
s - S
O 23] Ficure 20. The four signatures of quadratic homoclinic tangencies.
[ g
WG Case (¢) ¢ >0,6>0,(b)a<0,0>0,(c)x>0,6<0,(d)a<0,8<0.
E 8 To illustrate the argument, fix ¢ = ¢, € (0, 1) and consider a one parameter family of maps

E, = F,_utcy,e such that for v < 0 We(p) n Ws(p) = @ in some neighbourhood, while for
v > 0 we have transversal intersections and at v = 0, F; has a quadratic tangency ¢ in that
neighbourhood. (For example, # = Af(¢) is one of the bifurcation curves in the primary homo-
clinic fan.) We pick a coordinate system (x, y) such that, in a neigbourhood U of p, W*(p) and
Wu(p) are given by y = 0 and x = 0 respectively. Let g, = (0, 7) and ¢, = (%, 0) = Fg'(g,)
for some (large) integer n be (non-transverse) homoclinic points and 4,, 4, be neighbourhoods
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of ¢, ¢, lying in U as shown in figure 204. Here we show the first such tangency. Now for large
m the map F*: A, - A, is well approximated by
m A™ 0

E@)m = [ 5], (4.16)
where 0 < A < 1 < y,and Ay = ¢, < 1 and m —> o0 as we pick domains in 4, closer and closer
to W&(p). The form of the map Fy':4, - 4, (n is fixed) may also be approximated since, by
hypothesis, the vertical line W?(p) n A, is mapped to the parabola Wy(p) n 4, and the parabola
Ws(p) n A, to the horizontal line W5(p) n A,. Also, as v varies, the images undergo a vertical
translation. Thus we have the ‘model’ map

Fdy > A & (xy) > (F—aly—7), fx+0(y—7)* ~ ov). (4.17)

(Here we assume that, to first order, vertical lines map to parabolas and that the inverse
images of horizontal lines are likewise parabolas.) For the case of figure 202 we have , £, & > 0.
Composing the two maps and rescaling to remove the redundant parameter § we arrive at a
quadratic approximation to the map F,"*": 4, - A;:

G (%,y) > (X—a(y™y—7), Amax+8(y"y—§)*—dv); @ = + 1. (4.18)

Of course, the domain of the map is not the whole of 4,, since some points never return to 4,;
in particular, we require y™y — 7 sufficiently small. More precisely, we fix an integer m and a
horizontal strip H(m) < A, such that F™(H(m)) n A, is a vertical strip ¥V(m) and hence
F+™(H(m)) n A, is non-empty. Equation (4.18) then permits us to compute the approximate
bifurcation value v,(m) for which a pair of periodic orbits, a saddle and a sink, of period m +n
appear in a saddle node bifurcation:

vi(m) = (1/8) (axkA™—gy—™) —3[(A" +v~™) /61, (4.19)
since for v = v (m) (4.18) has two coincident fixed points which split apart or vanish as v
varies. For large m, since y~™, A™ and (Ay)™ = ¢ — 0, we have

vi(m) ~ —y™g/é, (4.20)
i.e. vy(m) - 0~ for § > 0 and v(m) - 0t for § < 0. Thus the homoclinic tangency at v = 0
is the limit of a countable sequence of saddle node bifurcations occurring for v < 0 in cases
(a) and () of figure 20 and for » > 0 in cases (¢) and (d). It is amusing to note that these
bifurcations accumulate at the geometric rate 1/y, where 7 is the largest eigenvalue of DF,(p)
and thus is specific to the particular map and not a universal number.
Equation (4.18) can further be solved for flip bifurcation points v,(m) € (v,(m), 0) for the
sink, to yield

vo(m) = (1/6) (axd™ —gy=™) +§[(A™+y™™) /8] ~ —y~™g/d+3y~2m/48%  (4.21)

It is, in fact, apparent from the sketches of the strips H(m) and their images F;"*"(H(m)) of
figure 204, that, as the homoclinic tangency approaches, so full horseshoes of successively
higher periods m+n are created. (The Smale-Birkhoff homoclinic theorem (Smale 1963;
Moser 1973 ; Guckenheimer & Holmes 1983) implies that hyperbolic horseshoes of all sufficiently
large periods m +n exist near the point ¢, € 4, for all v > 0.) We conclude that v,(m) is but
the first of a countable sequence of period doubling bifurcations which must take place before
v = 0, since for v > 0 (respectively v < 0) there is a full (m+=n)-horseshoe in A4; near ¢,
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containing points of all periods for the map F™+7, In fact countable sets of further bifurcations
must also occur, in which points of period 2!3(m +n), 2'5(m+n); [ = 1, 2, ..., etc. are created.
Since such sequences occur for each sufficiently large m we have a countable sequence of
countable sequences of bifurcations all accumulating on » = 0. One can thus find sinks of
arbitrarily high period in any neighbourhood of a non-transverse homoclinic point ¢, and finite
sets of these sinks persist when the homoclinic tangency is broken. Newhouse’s results (1979,
1980) give more information and in particular show that the closure of the set of homoclinic
points of a suitably perturbed map is contained in the closure of the set of its periodic sinks.

We note that the creation of the (m+n)-horseshoe contained in H(m) n F,**"(H(m)) for
F*+" between the saddle node bifurcation point v,(m) and v = 0 will mirror in miniature all
the features of the creation of the 1-horseshoe for F,  itself. In the next section we shall address
the task of connecting the bifurcation sets in which such £ = (m + n)-shoes are created with the
boxes [s}, #j] for the one-dimensional map.

In establishing the convergence of saddle-node and flip bifurcations to v = 0 we have
shown that the homoclinic bifurcation point is inaccessible from one side, in Gavrilov &
Silnikov’s term. It turns out that, in case (a) this point is inaccessible from both sides, since a
further sequence of saddle-nodes accumulates on v = 0 from above for a, & > 0. We refer the
reader to Gavrilov & Silnikov (1973) for details, noting that our cases (a, 4, ¢, d) correspond
to cases 10, 4, 1 and 2 respectively in table 1 of that paper. The orbits created in this second
sequence of saddle-nodes are ones containing points which remain close to the saddle p for
two passes of length m, and m,, with m, > m,.

We shall need asymptotic estimates of the saddle node bifurcation points for these orbits in
§5, so we outline their derivation briefly. Composing two maps G, ,,, oG, ,,, of the form (4.18)
we find that double pass periodic orbits correspond to real roots of the pair of simultaneous
quadratic equations

Y, = (1+ymAm)=t (ymAmai—g+ym 8Yi—ym™ dv),

Yy = (T+ymam)=t (ymAm aX—g+ym™ Y —ym ov), }
when ¥; = y™iy — . It is possible to check that a saddle-node bifurcation for an orbit of period
my +my+ 2n occurs at a point vy (my, m,), with

vy(my, my) € (0, (Amax—y~™j)/d). (4.23)

Now, for fixed A, v and a, & > 0 we can choose m, > m,(> 1) such that A™a% > y~™7 and
vy(my, my) > 0. Thus, in case (a) we can find an accumulating sequence of saddle-nodes
approaching v = 0 from above, as claimed. However, a careful examination of the other
three casesa > 0, & < 0 and @ < 0, & 2 0 shows that such (m,, m,) orbits appear on the same
sides of » = 0 as do the single pass orbits found above, and bifurcations of this type therefore
appear to be inaccessible only from one side. See Guckenheimer & Holmes (1983, chap. 6.6)
for an alternative approach to these double pass bifurcations and the horseshoes created sub-
sequent to them. :

We remark that all four types (a)-(d) of homoclinic bifurcations occur on curves in the
primary fan, as a return to our discussion in §4.4 and careful attention to figure 14 will show.
We summarize:

(4.22)

ProOPOSITION 4.9. Choose €, € (0, 1). Suppose that p = hi(e,) is a bifurcation point for F, . on a
curve k¥ (€) in the primary homocolinic fan. Then in any neighbourhood of (R (&), €) to the left of the
curve h¥(€) there is an accumulating sequence of saddle-node, flip and homoclinic bifurcations in which,
fixed points and horseshoes of arbitrarily high period are created for F, . as p increases for fixed €. Moreover
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if the homoclinic tangency is of type (a) (for example hi(e) = hy(€)), then accumulating bifurcation
sequences can be found in any neighbourhood of ki (€,) on both sides of hi (€).

When we trace bifurcation curves for periodic orbits in the next section we shall see how these
accumulating sequences behave for ¢ - 0 and ¢ - 1. For instance, it is clear that the sequence
to the left of £,(€) for ¢ < 1 must somehow switch across to the right as € - 1, since g = (1) =
51(1) is the leftmost bifurcation point for F, ; and the non-wandering set is empty for 4 < s,(1)
and € = 1.

5. BIFURCATIONS OF PERIODIC ORBITS FOR THE PLANAR MAP

In §3 we showed that each of the saddle node and flip bifurcation points sf, fii, for the one-
dimensional map could be extended to a unique curve # = si(€), fy(€) which crosses the (x4, €)
plane to meet the line ¢ = 1. While it is clear the order of the flips f#,(e) within a sequence
(J, k fixed, [ increasing) must remain as in the one-dimensional map - an orbit cannot flip
before it exists! — we shall see that the ordering of the bifurcation boxes [si(e) 4} (€)] changes
dramatically, even under our assumption of the ‘monotonic’ creation of additional periodic
and homoclinic orbits for F, . as u increases for fixed e. We shall use the ordering established
in theorem 4.8 for certain homoclinic bifurcations together with the accumulation results for
periodic orbits of proposition 4.9 to link certain bifurcation sequences [si(e), A}(¢)] to homo-
clinic bifurcation curves in the primary fan. In this way we shall be able to trace the order
of some of the bifurcations of F, , as € increases.

5.1. Itineraries and bifurcation sequences for periodic orbits of F, e € (0, 1)

The discussion in §4.4 shows that for a regular versal family F, ,, pairs of homoclinic orbits
are created in quadratic homoclinic tangencies as g increases for fixed ¢, apart from the
‘transition’ values of e for which tangencies of cubic type occur. Moreover, for any N < oo
we can pick ¢(N) > 0 such that the (regular) homoclinic bifurcation curves for the creation
of pth stage orbits, p < N, do not intersect for e < ¢(N). The 2¥+1 such homoclinic orbits
arise in 2V bifurcations with associated bifurcation diagrams like those of figure 184, above and
are ordered according to the prescription of theorem 4.8. In this situation we can meaningfully
extend the itineraries of §4.4 to parameter values u € [p,(€), fZ,(€)]. We do this as follows.

First note that for all 4 > #,(¢) and each value of 0 < ¢ < ¢(N) the partition curves ¥ ()
of §4.4 can be extended into a vertical surface in (x, y, #) space in such a manner that no
homoclinic point of stage less than or equal to N lies on it, and for # = #,(€) the ‘last’ homo-
clinic bifurcation point is g = #"(¢) n &(u). We next connect the 2V pth stage homoclinic
bifurcation points p < N on & (u) to form a curve v(u) which intersects the 2¥ arcs of the
bifurcation diagram only at the bifurcation points. Translating v(x) vertically forms the remainder
of our surface ¥". Finally we extend the construction of itineraries to u € [¢,(€), y(€)] using
constant y slices ¥"(u) of " and taking the limit from the left in case a point on the orbit lies
on ¥ It is clear that the itineraries of specific pth stage homoclinic orbits do not change until
they coalesce in pairs at the appropriate bifurcation point. Moreover, ¥~ can be chosen such
that, as € - 0, it converges on the plane x = 0.

We define the (double-sided) itineraries for arbitrary points ¢ in the non-wandering set
Q,.of F, for u > hy(e) just as for the homocolinic orbits to p. We continue to denote those
points by their itineraries as # decreases, until they ultimately vanish, although, as before,
the meaning of the itineraries for 4 < #,(¢) is not clear: for example, two distinct periodic
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orbits may have the same itineraries for F, . when they do not for f,. However, for u > #,(e)
the itineraries are true invariants. Moreover, for # > £,(¢) there is a one to one correspondence
between certain points ge 2, . and their forward itineraries {a;(¢)}{Zo and those of the non-
wandering set 2, of f,, since both 2, and 2, , are hyperbolic two-shifts. In addition to this,
we have the following:

ProrosITION 5.1. As € — O the future itineraries of points ¢ = (x,y) € 2, . converge on the itiner-
aries of the points x under f, for all p.

Proof. This follows directly from the fact that, as € - 0 so the coordinates of points g€ 2, ,
approach (#, f,(x)) and their forward orbits {F; (¢)} approach { f7(x), fi***(%)}. Thus, using our
vertical partition ¥ — {(x, y) |x = 0} as e > 0, we see that the itinerary of ¢ approaches that
of x for f,.

Remark. While there is a 1:1 correspondence between periodic orbits of F, . and those of £,
we note that for any asymptotically periodic orbit of f, there are countably many asymptotically
periodic orbits of F, . whose backward itineraries {a;};”'_,, differ. An obvious example is provided
by the countable set of homoclinic orbits to p. Similarly, £, . contains uncountably many
additional non-periodic orbits.

We now address the order of creation of the periodic orbits of F), .. Referring to the discussion
of accumulating sequences of ‘single pass’ saddle-node bifurcations of §4.5, it should be clear
that, close to a given homoclinic bifurcation point 4§ (e) there is a countable set of saddle—
node bifurcations in each of which a pair of periodic orbits appears whose itineraries match
those of the pair of homoclinic orbits created at 4§ (¢) on an arbitrarily long block, including
the central portion. To construct these itineraries (which correspond to orbits of period
k = m+n with m sufficiently large; cf. §4.5) we cut out a central piece of the itinerary of the
bifurcating homoclinic orbit of length £ and attach the initial and final ‘+’ to form a periodic
sequence. More precisely, select a homoclinic bifurcation point g = Af(e) in the primary fan
and form the itinerary a(h(p)) of the bifurcating homoclinic point A(x). Let a_, = — be the
first symbol of a to differ from + ;if @, = — is the first, let p = 0. Rewrite the central block of
k = p+q¢+1 symbols in the form

{agayay .. aga_pa_y gy ...ay} ={ag—+... +a_pa_p_y ... a1}, (5.1)

for all ¢ > 1, and iterate to form k-periodic itineraries (5)’ (as in §2, a prime denotes periodic
repetition). For each subsequence {a_,, ... a_;}, we thus produce an infinite set of periodic
itineraries of periods k£ > p+2.

Examples. The periodic itineraries corresponding to the four homoclinic bifurcation points
hl(e)’ hl, (6), hl,lr(e), h—l(e) are

k—2 \
—M
e (p=0)+—, +—+, +—+... + k=23, ...,
k—4
F“_A_—"_\
hae(p=2)+——+,+—+—, +—+...... +—+4+ k=4,5..,
' s (5.2)
—
b e) (p=2+———, +—+——, +—+...+—— k=4,5,..,,
k-3
oA —
e (p=1)+—— +——+, +—+....+ - k=34,...)
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Our definition of itineraries for periodic orbits of ¥, . now permits us to extend the work of
Gavrilov & Silnikov outlined in §4.5 and augment proposition 4.9 by the following.

PROPOSITION 5.2. As q >0 0 pairs of periodic orbits of period k = p+q+1 for F, . having

4
— A

[ Y
itineraries of the forms (ay— + + ...+ +a_, .... a_y)" converge on the homoclinic orbits with itineraries
vt 4a_,.oay80— + + ... Moreover, for €€ (0, 1) fixed, the saddle—node bifurcation points in
which such periodic orbits are created converge upon the corresponding homoclinic bifurcation points from
the left.

Thus the homoclinic bifurcation sequences determine the bifurcations of certain periodic
orbits, in an appropriate limit. In fact the convergence of such saddle-node bifurcations of
‘single pass’ periodic orbits from the left holds for 0 < € < 1, as can be seen by reference to
the approximate bifurcation value v,(m) of (4.19). When ¢ — 0 the contracting eigenvalue
A < 1 of the saddle p likewise approaches zero, and one obtains the same asymptotic result
as in (4.20). (However, we shall see later that the convergence of ‘double pass’ orbits from
the right does not persist as ¢ - 0.) Not only do the saddle-node bifurcations converge: the
analysis of §4.5 also shows that the attendent bifurcation curves on which flips occur and the
creation of a ‘single pass’ shoe of period £ is completed, also converge on the homoclinic bifur-
cation curves from the left. We summarize.

THEOREM 5.3. For any N < oo there exists 1 > e(N) > € > 0 such that for ¢y < € < e(N)
the order of occurrence of period k = p+q+1 saddle-node bifurcations si(e) (and their associated flip
and homoclinic bifurcations fiu(€), hy(€), ..., hi(€)), with increasing w is uniquely determined for
p < N, q sufficiently large (depending on €,), and orbits having itineraries of the form (+ —a_g 4y p .-
a_p...0y), a; =+, —(p+q) < i < —p. The order is determined by 0~ = {0771, where 07 =
[1}-1a_; and the prescription that an orbit a™ is created before an orbit a® if and only if 0-(a™) > 6—(a™).

Remarks. We need the upper limit ¢(N) to obtain the required order of bifurcations to pth
stage homoclinic orbits, p < N. The lower limit ¢, is required so that the homoclinic bifur-
cation curves in the fan are sufficiently separated for the accumulating sequences of saddle-
nodes to separate as ¢ — oo (from theorem 4.1, their separation is, asymptotically, O(eP)).

Since the first and last homoclinic bifurcations (k,(€), £,(€)) can be uniquely continued to
€ = 1 (i.e. ¢(1) = 1), we immediately have the following corollaries to proposition 5.2 and
theorem 5.3. ‘

COROLLARY 5.4. Consider the bifurcation boxes [sf(€), hi(€)] associated with periodic orbits that have
itineraries of the form (+ — + + ... +)'. For ¢ (depending on k) sufficiently small each such is the last
of its given period k to occur as p increases, while for € sufficiently close to 1 it is the first. Moreover, for
€ sufficiently small we have si,,(€) > si(e), while for e sufficiently close to 1 and k sufficiently large we
have sii(€) > s}..(€).

COROLLARY 5.5. Consider the bifurcation boxes [5f(€), kL] associated with periodic orbits that have
itineraries of the form (+ — + + ... + —)'. For ¢ (depending on k) sufficiently small, each such is the
penultimate of its given period k to occur as p increases, while for € sufficiently close to 1 it is the last. For
all € € (0, 1) and k sufficiently large we have 5},,(€) > §i(e).

It is not hard to see that the £-periodic orbits with itineraries (+ — + + + .. +)’ of corollary
5.4, which make a single circuit in the phase plane, are precisely the periodic orbits created
in resonant bifurcations of order (1/k£) from the elliptic fixed point as g varies from s,(1) to


http://rsta.royalsocietypublishing.org/

Y | \

THE ROYAL A
SOCIETY \

PHILOSOPHICAL
TRANSACTIONS
OF

a
A Y

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org
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f2(1) with € = 1 (their orbits wind once per period around the elliptic centre). We now see
how these resonant bifurcation curves for which we gave asymptotic expressions for ¢ ~ 1 in
§4.2 (cf. figure 12) can be continued down to € = 0. Thus we obtain the bifurcation diagram
of figure 21. We note that our ‘accumulation from the left’ results for si(e) - #;(e) derived
from the asymptotic behaviour of v,(m) of (4.19)—(4.20) for large m, fail as Ay = ¢ > 1 and
Ay - 0, so that these results do not contradict the fact that the saddle-node bifurcation curves
must cross to the right of the homoclinic curve as € — 1. Similarly, we note that the ‘double

sU=h(1 si,D) s FD=hy1) §,’;£1> 5l

. - IS BN
$ f; F  hy8 5y s Slah

Ficure 21. Bifurcation curves for some of the periodic and homoclinic orbits of F, .

pass’ periodic orbits with itineraries containing two consecutive strings of m; and m, +symbols
(my, > m; > 1) which bifurcate to the right of homoclinic bifurcation curves such as k;(e),
hy .(€) for € > 0, no longer do so as € - 0. To see this, we return to (4.23). For e = Ay > 0
we have A™ax > y~™j for m, > m,, and hence »,(m,;, m;) > 0. However, as ¢ - 0, the
attracting eigenvalue A — 0, and for each fixed m,/m, we then find v,(m;, m,;) < 0. Thus all
these bifurcation curves pass from right to left of the homoclinic curves as ¢ - 0, so that we ob-
tain the desired one-dimensional behaviour in the limit: i.e. 4, is the last bifurcation point for f,.

We note that these corollaries imply that there are open sets of (u, €) parameter values
arbitrarily close to ¢ = 0 for which F, , has at least two coexisting stable sinks (cf. Gambaudo
& Tresser 1983). However, it is not obvious that one can iterate such a precess to produce the
countable sets of sinks that have been proved to exist near homoclinic tangencies by Newhouse
(1979) (cf. Robinson 1983)!

5.2 Genealogies for k-periodic orbits and k-shoes

The discussion in §4.4 shows that, while we cannot easily order all the homoclinic bifurca-
tions for ¢ € (0, 1) as p increases, we can divide them into three types:

(i) regular bifurcations in which orbits that have itineraries with central blocks —a_¢,_y) ...
a_; + — appear;

(ii) irregular bifurcations in which orbits that have itineraries with central blocks — +a_,_5
...a_ja,— appear; and
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(6) e
et
- . - )

~~o
-

Ficure 22. Bifurcation diagrams for homoclinic and periodic bifurcations: , sink; — — —, saddle with positive
eigenvalues; —-—- -, saddle with negative eigenvalues. (2) Regular homoclinic bifurcations and associated
saddle-nodes and flips (small €). (5) Irregular homoclinic bifurcations and associated saddle-nodes and flips
(large€). (¢)Cubic homoclinic bifurcations and associated saddle-nodes, pitchforks, and flips (intermediate €).

(iii) degenerate bifurcations of cubic type in which three homoclinic orbits coalesce.

So far we have concentrated on regular bifurcations and described a unique ordering for
them. As our results show, increasingly many bifurcations are of this type as ¢ - 0. The con-
vergence results of propositions 4.9 and 5.2 imply that the bifurcation diagrams for the asso-
ciated k-periodic orbits and k-horseshoes have the form indicated in figure 224. In contrast,
the irregular bifurcation diagrams for certain pth stage homoclinic orbits p > 4, change to that
of figure 224 as € increases, the periodic orbit bifurcation diagrams changing likewise. We
conclude that not only does the order of the periodic bifurcations change as € increases, as
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established earlier, but the genealogy of pairs of k-periodic orbits also changes. Moreover, for
F, . regular and versal, the transition between the bifurcation diagrams of figure 224 and &
must be via the pitchforks of figure 22¢, and the associated bifurcation sets must exhibit cusps
(cf. §3.1). It is probably possible to order subsequences of such irregular periodic bifurcations,
but we have not attempted to do this in a systematic fashion.

TABLE 5. REGULAR HOMOCLINIC BIFURCATIONS OF STAGES NOT EXCEEDING 4
AND ASSOCIATED SADDLE—NODE BIFURCATIONS TO PERIODS OF 7 OR LESS

stage central block associated periodic associated saddle-nodes, s] and
of orbits of itinerary itinerary number (g) of iterates spent near p
1 + - (=t +) 53 (1)5 565 (2)5 55, (3)5 55, (4)5 83 (5)
L._.Y._..._._/
q
4 —+++t- (+ =+t —+++)
H___J
4 -—+++- (+—4. 4+ —-—++)
;Y__J
3 -—++ - (F=+.c+—++)
\_—Y...._J
3 —— 4= (F =4t ——+) 53 (2)
;.Y._J
(4, 4 omitted; irregular bifurcations)
2 -++ - (+~=++...4—-+) s, (3)
;__\(_._J
2 -—k- (+=F 4.t =--) s (1)3 5% (2)5 43, (3)
k_“"\f"_J
4 —t——t - (+=+.c+—+—=)
\_..\(._—J
4 ——— - (4=t === =) s (1)
\_..Y..J
3 —_———t— (+=+od——=) s, (2)
L_V_J
3 -t -t~ (+ =+t —+-) 55, (2)
\*"Y_')
4 ——t -t (=4t ==+ =) s (1)
\_..Y.._/
4 ~++—t— (=4t —++=)
\-‘W’"‘—)
t — - (+ =+t + =) ERCIENOERT)
;"'Y—_j

We end this section by noting that all the accumulation results for periodic orbits and bifur-
cations extend in the obvious way to the bifurcations occurring in fans that grow from all the
points (A, 0). For example, in our discussion of orbits of periods of 7 or less in the next
section we find that one of the saddle-node bifurcations to period 6 can be associated with a
homoclinic bifurcation curve growing from (4,, 0). Within each horseshoe little shoes are
growing !

6. CONCLUSIONS: A MODEL FOR THE MAKING OF SHOES, AND
SOME NUMERICAL COMPUTATIONS FOR THE HENON MAP

We now attempt to summarize our results for versal families F, ., € € [0, 1]. We do this by

an illustration in which we trace the bifurcation boxes [s{(e), #j(¢)] for all periods ¥ < 7, under
assumptions on the structure of the homoclinic bifurcation set Af(¢) for orbits of stages not
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exceeding 4. Specifically, we assume that, for ¢ < 1, all these homoclinic bifurcations are
regular except the cubic ones in which the three orbits with central blocks — — — 4+ + —,
—+—++— and — + — 4+ — — coalesce, and the subsequent irregular bifurcations of the
pairs — + —+ — — and — + — + + — (cf. §4.4). our numerical results for the Hénon map,
described below, are consistent with this assumption. We further extend the spirit of the
ordering of theorem 5.3 by associating the periodic orbits with itineraries of the form
(=@ pygp+e-Qyp-..ay)a; =+, —(p+q) < i < —p with regular homoclinic bifurcations
of the type —a_, ... a_+ — for all ¢ > 1, although we can only be sure that their associated
saddle-node and flip bifurcations occur close to the homoclinic bifurcations for ¢ large.

We first write down the itineraries for the homoclinic orbits of stages of 4 or less in the
correct bifurcation order, omitting the irregular pair — - —+ + — and —+ —+ % —:
table 5, column 2. We then form the associated periodic itineraries according to the prescrip-
tion of §5.1 (column 3). We then refer to table 1 of §2 and pick out the periodic itineraries
that correspond to the ones we have just formed. Each of these can now be associated uniquely
with a saddle-node bifurcation point si or a flip £, and also with a homoclinic bifurcation
curve in the fan based at (%, 0). Thus we are able to match bifurcation boxes [s, #}] for all
orbits of period not exceeding 7 except for the first of period 6 to appear, with itinerary
(+ — 4+ — — —=)". It is not difficult, however, to see that this one is associated with the leftmost
homoclinic bifurcation curve A,(¢) which comes from the point (4, 0), on which the homo-
clinic orbits to the saddle ¢ = {3(—(1+¢€)+[(1+e)2+4uld), 3(—(1+e)+[(1+e)2+4u]})}
with itineraries ... — — — + — 4+ — — — ... appear. The remaining orbits unaccounted for
in the sequences that accumulate on the members of the primary homoclinic fan are the
period 2 and 4 orbits (+ —)’, (+ — + —)’ which appear on the flip bifurcation curves f;(e),
Jfa(€), and the period 6 orbit (+ — + + — +)’ which appears on f3,,(¢), where the period three
sink has a period doubling bifurcation. We note that two of the three period 5 saddle-nodes,
s3, s3, can be connected to the resonant bifurcations (1, 5), #(2, 5) ; only s¢ can be connected to
(1, 6) among the period 6 values, and s3, 53, s} respectively can be connected to x(1, 7),
1(2,7), w(3,7) for the period 7 saddle nodes. In making such connections, we carefully
consider the number of circuits the orbit F, ,(¢) of a k-periodic point ¢ makes about the
elliptic centre at x =y = (1+p)¥—1. This statement is vague, but Holmes & Williams
(1984) show that it can be made precise by suspending the horseshoe in a suitable flow and
considering the knot types of certain periodic orbits. These knots are topological invariants

and hence permit one to trace bifurcating orbits as e varies. In particular a theorem in Birman
2n
f—_‘"'—&"——\
& Williams (1983) implies that orbits of period 2z + 1 with itineraries of theforms + — — —... — —
2n—2
N
and + — + — — —..— are torus knots of type (7, 2z2+1) and hence can be connected with

resonant bifurcations of the form g(n, 2n+1). Thus + — — — — — — connects to #(3, 7), and,
more generally, the first saddle-node s3,.; of each odd period to appear in the Sarkovskii
ordering for f, connects to the last resonant bifurcation of type u(n, 2n+1) for ¥, ; from the
elliptic fixed point.

To conclude this section, and the paper, we present some numerical computations of homo-
clinic and periodic bifurcation curves for the quadratic (Hénon) map with f,(y) = x—y>
In figure 234, we show bifurcation curves for saddle-node and flip bifurcations of all orbits

7 Vol. g11. A
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Ficure 23. Some bifurcation curves for the Hénon map.
(a) Saddle-nodes and flips of periods ¥ < 7. () Homoclinic bifurcation curves.
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of periods £ < 7. Similar curves for certain of these families (and some additional ones) were
computed earlier by El-Hamouly & Mira (1981) and several others. We note that the ordering
of the bifurcations for small ¢ and ¢ near 1 is almost as predicted by our theory, even though
the blocks of successive + in the itineraries of some of these orbits are quite short. The only
orbits to come ‘out of sequence’ are s3 and s7 and for these the + blocks are of length 1! In
figure 235 we show some bifurcation curves for homoclinic orbits to both saddle points. We
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have computed all but two of the 16 curves occurring in the first four stages of the fan over #;.
Note how the two fourth stage irregular curves peel away from their sector rapidly as ¢ increases
and how the bounding curves %,(¢) and #,(¢) appear to approach (ky, 0) with different slopes.
We have only computed the bounding curves /,(¢), A,(¢) for the fan over 4,, but note that they
do appear to be tangent at (A, 0), as predicted.

We remark that a ‘trapping region’ D exists for the map F, . for all parameter values lying
between the saddle-node bifurcation curve s;(¢) and a heteroclinic bifurcation curve Af(¢)
based at (h, 0) (cf. Hénon 1976; Feit 1978). D is bounded by the stable manifold W3(p) of
the saddle point at the lower left. Thus for such parameter values we can define an attracting
set & = N,50 Fy (D). The attracting set vanishes when W?U(g), the unstable manifold of the
fixed point at the upper right, and W3(p) intersect: the ‘first’ such intersection with increasing
4 defines A (¢). Clearly &/ contains all the unstable periodic points and their unstable mani-
folds, but equally certainly it is not necessarily a strange attractor, since it also contains stable
periodic orbits for many parameter values (probably an open dense set) and hence cannot
contain a dense orbit. The question of whether strange attractors exist for F, . with ¢ # 0
is still open. See Simo (1979) and Hitzl (1981) for more on the trapping region.

In closing we remark that, although we have concentrated on the parameter strip0 < ¢ < 1,
many of our results extend to the case ¢ < 0 and moreover that, for the Hénon map one can
obtain the behaviour for ¢ > 1 and ¢ < —1 from that occurring for ¢ € (1, 1), using the
symmetry of the contracting and expanding maps under the transformations (x, y) - ( + ey,
tex) (cf. Devaney & Nitecki 1979). Also, while we have concentrated on a study of the struc-
ture of the homoclinic bifurcation fan based at (&, 0), and of the associated accumulating
sequences of saddle nodes and flips, it should be clear that our ideas can be extended to des-
cribe the homoclinic and periodic bifurcation structures associated with other points (A, 0).

APPENDIX. COMPUTATION OF THE COEFFICIENT bl FOR RESONANT BIFURCATIONS

Employing the transformations # = x— 2,7 = y—02, 2 = 1—(1+p)}, and

a 0 17 [u] [u -0 1 7
o] = Lo ol [o)- 2] - [<1 7 | s Ay
1 o ]
we obtain the map G ¢(%, v) with the linear part in normal form (a rotation matrix) :

[u] N [cos 6 —sin 0] [u] B [(sin 0) u+2(cos ) uv + (cos? 6 /sin 0) vZJ ,

v sin 0 cos 0 0

(A2)

where cos 6 = 2, sin 0 = (1—2%)3} We next use the formula (cf. Wan 1978; Iooss 1979)

2
op,0 = £11 €20 (?A ) + lgul/\"‘ilngZI +&o15

where A, X = A(0, 0), A(0, 0) = e*? and
1

oo = 3lgun—gov +28%0) +i(ghu — Gos — 28u) ],

£ = H(giu +gw) +i( g+ &%),

8oz = [ (giu — 2g0w) +i(ghu — o0 + 28w) ], .

£y = Tlia‘[(3gu11u + g + Giow + 380w) +1(38hun — Gouw + Gove — 3ghow) 1, (A 3)

7-2


http://rsta.royalsocietypublishing.org/

) 0

A

/

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A
I \

S

a

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

100 P. HOLMES AND D. WHITLEY

and g, gi, etc. denote the components of the nonlinear term of (A 2) and their partial de-
rivatives. We note that there are no third order terms in this case and hence £,, = 0. Finally,
we can obtain the coefficient 5,(0, 0) as

b,(0, 0) = Im («(0, 0) X(0, 0)). (A 4)
Straightforward, if tedious, computations now give

£op = (cos 20 +1 sin 20) /4 sin 0,

51; = —}sin 0,
£y = (cos 20 —isin 20) /4 sin 0, (A 5)
and substitution of (A 5) and A, A = cos 6 +1isin @ into (A 3)—(A 4) yields
Re (a(0, 0)) = 0, (A 6)
as required, and
5,(0, 0) = Im (a(0, 0) A(0, 0)) = — (2 +cos 26)/8 sin H(1 —cos 0). (A7)

Since in our matrix representation of (A 2) we take 0 € (0, n), we have sin 6 > 0 and all the
other terms in (A 7) are likewise positive. Thus we have 4,(0,0) < 0 for all pe (-1, 3).

This work was partly supported by N.S.F. grant CME 80-17570 and the Center for Applied
Mathematics, Cornell University.
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